1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
use alloc::vec;
use alloc::vec::Vec;
use core::f32;
use core::fmt::{Debug, Display};
use core::ops::{Add, Div, Mul, Sub};

use crate::core::reader::types::{NumType, ValType};
use crate::execution::assert_validated::UnwrapValidatedExt;
use crate::{unreachable_validated, Error, RefType, Result};

#[derive(Clone, Debug, Copy, PartialOrd)]
pub struct F32(pub f32);

impl Display for F32 {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        write!(f, "{}", self.0)
    }
}

impl PartialEq for F32 {
    fn eq(&self, other: &Self) -> bool {
        self.0.eq(&other.0)
    }
}

impl Add for F32 {
    type Output = Self;
    fn add(self, rhs: Self) -> Self::Output {
        Self(self.0 + rhs.0)
    }
}

impl Sub for F32 {
    type Output = Self;
    fn sub(self, rhs: Self) -> Self::Output {
        Self(self.0 - rhs.0)
    }
}

impl Mul for F32 {
    type Output = Self;
    fn mul(self, rhs: Self) -> Self::Output {
        Self(self.0 * rhs.0)
    }
}

impl Div for F32 {
    type Output = Self;
    fn div(self, rhs: Self) -> Self::Output {
        Self(self.0 / rhs.0)
    }
}

impl F32 {
    pub fn abs(&self) -> Self {
        Self(f32::from_bits(self.0.to_bits() & !(1 << 31)))
    }
    pub fn neg(&self) -> Self {
        Self(f32::from_bits(self.0.to_bits() ^ (1 << 31)))
    }
    pub fn ceil(&self) -> Self {
        Self(libm::ceilf(self.0))
    }
    pub fn floor(&self) -> Self {
        Self(libm::floorf(self.0))
    }
    pub fn trunc(&self) -> Self {
        Self(libm::truncf(self.0))
    }
    pub fn round(&self) -> Self {
        Self(libm::roundf(self.0))
    }
    pub fn sqrt(&self) -> Self {
        Self(libm::sqrtf(self.0))
    }

    pub fn min(&self, rhs: Self) -> Self {
        Self(if self.0.is_nan() {
            self.0
        } else if rhs.0.is_nan() {
            rhs.0
        } else {
            self.0.min(rhs.0)
        })
    }
    pub fn max(&self, rhs: Self) -> Self {
        Self(if self.0.is_nan() {
            self.0
        } else if rhs.0.is_nan() {
            rhs.0
        } else {
            self.0.max(rhs.0)
        })
    }
    pub fn copysign(&self, rhs: Self) -> Self {
        Self(libm::copysignf(self.0, rhs.0))
    }
    pub fn from_bits(other: u32) -> Self {
        Self(f32::from_bits(other))
    }
    pub fn is_nan(&self) -> bool {
        self.0.is_nan()
    }
    pub fn is_infinity(&self) -> bool {
        self.0.is_infinite()
    }
    pub fn is_negative_infinity(&self) -> bool {
        self.0.is_infinite() && self.0 < 0.0
    }

    pub fn as_i32(&self) -> i32 {
        self.0 as i32
    }
    pub fn as_u32(&self) -> u32 {
        self.0 as u32
    }
    pub fn as_i64(&self) -> i64 {
        self.0 as i64
    }
    pub fn as_u64(&self) -> u64 {
        self.0 as u64
    }
    pub fn as_f32(&self) -> F64 {
        F64(self.0 as f64)
    }
    pub fn reinterpret_as_i32(&self) -> i32 {
        self.0.to_bits() as i32
    }
}

#[derive(Clone, Debug, Copy, PartialOrd)]
pub struct F64(pub f64);

impl Display for F64 {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        write!(f, "{}", self.0)
    }
}

impl PartialEq for F64 {
    fn eq(&self, other: &Self) -> bool {
        self.0.eq(&other.0)
    }
}

impl Add for F64 {
    type Output = Self;
    fn add(self, rhs: Self) -> Self::Output {
        Self(self.0 + rhs.0)
    }
}

impl Sub for F64 {
    type Output = Self;
    fn sub(self, rhs: Self) -> Self::Output {
        Self(self.0 - rhs.0)
    }
}

impl Mul for F64 {
    type Output = Self;
    fn mul(self, rhs: Self) -> Self::Output {
        Self(self.0 * rhs.0)
    }
}

impl Div for F64 {
    type Output = Self;
    fn div(self, rhs: Self) -> Self::Output {
        Self(self.0 / rhs.0)
    }
}

impl F64 {
    pub fn abs(&self) -> Self {
        Self(f64::from_bits(self.0.to_bits() & !(1 << 63)))
    }
    pub fn neg(&self) -> Self {
        Self(f64::from_bits(self.0.to_bits() ^ (1 << 63)))
    }
    pub fn ceil(&self) -> Self {
        Self(libm::ceil(self.0))
    }
    pub fn floor(&self) -> Self {
        Self(libm::floor(self.0))
    }
    pub fn trunc(&self) -> Self {
        Self(libm::trunc(self.0))
    }
    pub fn round(&self) -> Self {
        Self(libm::round(self.0))
    }
    pub fn sqrt(&self) -> Self {
        Self(libm::sqrt(self.0))
    }

    pub fn min(&self, rhs: Self) -> Self {
        Self(if self.0.is_nan() {
            self.0
        } else if rhs.0.is_nan() {
            rhs.0
        } else {
            self.0.min(rhs.0)
        })
    }
    pub fn max(&self, rhs: Self) -> Self {
        Self(if self.0.is_nan() {
            self.0
        } else if rhs.0.is_nan() {
            rhs.0
        } else {
            self.0.max(rhs.0)
        })
    }
    pub fn copysign(&self, rhs: Self) -> Self {
        Self(libm::copysign(self.0, rhs.0))
    }

    pub fn from_bits(other: u64) -> Self {
        Self(f64::from_bits(other))
    }
    pub fn is_nan(&self) -> bool {
        self.0.is_nan()
    }
    pub fn is_infinity(&self) -> bool {
        self.0.is_infinite()
    }
    pub fn is_negative_infinity(&self) -> bool {
        self.0.is_infinite() && self.0 < 0.0
    }

    pub fn as_i32(&self) -> i32 {
        self.0 as i32
    }
    pub fn as_u32(&self) -> u32 {
        self.0 as u32
    }
    pub fn as_i64(&self) -> i64 {
        self.0 as i64
    }
    pub fn as_u64(&self) -> u64 {
        self.0 as u64
    }
    pub fn as_f32(&self) -> F32 {
        F32(self.0 as f32)
    }
    pub fn reinterpret_as_i64(&self) -> i64 {
        self.0.to_bits() as i64
    }
}

/// A value at runtime. This is essentially a duplicate of [ValType] just with additional values.
///
/// See <https://webassembly.github.io/spec/core/exec/runtime.html#values>
// TODO implement missing variants
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum Value {
    I32(u32),
    I64(u64),
    F32(F32),
    F64(F64),
    // F64,
    // V128,
    Ref(Ref),
}

#[derive(Clone, Copy, Debug, PartialEq)]
pub enum Ref {
    Func(FuncAddr),
    Extern(ExternAddr),
}

impl Ref {
    pub fn default_from_ref_type(rref: RefType) -> Self {
        match rref {
            RefType::ExternRef => Self::Extern(ExternAddr::default()),
            RefType::FuncRef => Self::Func(FuncAddr::default()),
        }
    }

    pub fn is_null(&self) -> bool {
        match self {
            Self::Extern(extern_addr) => extern_addr.addr.is_none(),
            Self::Func(func_addr) => func_addr.addr.is_none(),
        }
    }

    pub fn is_specific_func(&self, func_id: u32) -> bool {
        match self {
            Self::Func(func_addr) => func_addr.addr == Some(func_id as usize),
            _ => unreachable!(),
        }
    }
}

impl Display for Ref {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            Ref::Func(func_addr) => write!(f, "FuncRef({:?})", func_addr),
            Ref::Extern(extern_addr) => write!(f, "ExternRef({:?})", extern_addr),
        }
    }
}

/// Represents the address of a function within a WebAssembly module.
///
/// Functions in WebAssembly modules can be either:
/// - **Defined**: Declared and implemented within the module.
/// - **Imported**: Declared in the module but implemented externally.
///
/// [`FuncAddr`] provides a unified representation for both types. Internally,
/// the address corresponds to an index in a combined function namespace,
/// typically represented as a vector.
#[derive(Clone, Copy, PartialEq)]
pub struct FuncAddr {
    pub addr: Option<usize>,
}

impl Debug for FuncAddr {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self.addr.is_none() {
            false => write!(f, "FuncAddr {{\n\taddr: {}\n}}", self.addr.unwrap()),
            true => write!(f, "FuncAddr {{ NULL }}"),
        }
    }
}

impl FuncAddr {
    pub fn new(addr: Option<usize>) -> Self {
        match addr {
            None => Self::null(),
            Some(u) => Self { addr: Some(u) },
        }
    }
    pub fn null() -> Self {
        Self { addr: None }
    }
    pub fn is_null(&self) -> bool {
        self.addr.is_none()
    }
}

impl Default for FuncAddr {
    fn default() -> Self {
        Self::null()
    }
}

/// Represents the address of an external reference in the interpreter.
///
/// External references are managed at the interpreter level and are not part of
/// the WebAssembly module itself. They are typically used to refer to host
/// functions or objects that interact with the module.
///
/// Internally, [`ExternAddr`] corresponds to an index in a linear vector,
/// enabling dynamic storage and retrieval of external values.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct ExternAddr {
    pub addr: Option<usize>,
}

impl ExternAddr {
    pub fn new(addr: Option<usize>) -> Self {
        match addr {
            None => Self::null(),
            Some(u) => Self { addr: Some(u) },
        }
    }
    pub fn null() -> Self {
        Self { addr: None }
    }
}

impl Default for ExternAddr {
    fn default() -> Self {
        Self::null()
    }
}

#[derive(Clone, Copy, Debug, PartialEq)]
pub enum RefValueTy {
    Func,
    Extern,
}

impl Value {
    pub fn default_from_ty(ty: ValType) -> Self {
        match ty {
            ValType::NumType(NumType::I32) => Self::I32(0),
            ValType::NumType(NumType::I64) => Self::I64(0),
            ValType::NumType(NumType::F32) => Self::F32(F32(0.0)),
            ValType::NumType(NumType::F64) => Self::F64(F64(0.0_f64)),
            ValType::RefType(RefType::ExternRef) => Self::Ref(Ref::Extern(ExternAddr::null())),
            ValType::RefType(RefType::FuncRef) => Self::Ref(Ref::Func(FuncAddr::null())),
            other => {
                todo!("cannot determine type for {other:?} because this value is not supported yet")
            }
        }
    }

    pub fn to_ty(&self) -> ValType {
        match self {
            Value::I32(_) => ValType::NumType(NumType::I32),
            Value::I64(_) => ValType::NumType(NumType::I64),
            Value::F32(_) => ValType::NumType(NumType::F32),
            Value::F64(_) => ValType::NumType(NumType::F64),
            Value::Ref(rref) => match rref {
                Ref::Extern(_) => ValType::RefType(RefType::ExternRef),
                Ref::Func(_) => ValType::RefType(RefType::FuncRef),
            },
        }
    }
}

// ------------------------------ INTEROP VALUE -------------------------------------

/// An [InteropValue] is a Rust types that can be converted into a WASM [Value].
/// This trait is intended to simplify translation between Rust values and WASM values and thus is not used internally.
pub trait InteropValue: Copy + Debug + PartialEq {
    // Sadly we cannot use `SIZE` to return fixed-sized arrays because this is still unstable.
    // See feature(generic_const_exprs)
    const TY: ValType;
    #[allow(warnings)]
    fn into_value(self) -> Value;
    #[allow(warnings)]
    fn from_value(value: Value) -> Self;
}

/// An [InteropValueList] is an iterable list of [InteropValue]s (i.e. Rust types that can be converted into WASM [Value]s).
pub trait InteropValueList {
    const TYS: &'static [ValType];
    #[allow(warnings)]
    fn into_values(self) -> Vec<Value>;
    #[allow(warnings)]
    fn from_values(values: impl Iterator<Item = Value>) -> Self;
}

impl InteropValue for u32 {
    const TY: ValType = ValType::NumType(NumType::I32);
    #[allow(warnings)]
    fn into_value(self) -> Value {
        Value::I32(self)
    }

    #[allow(warnings)]
    fn from_value(value: Value) -> Self {
        match value {
            Value::I32(i) => i,
            _ => unreachable_validated!(),
        }
    }
}

impl InteropValue for i32 {
    const TY: ValType = ValType::NumType(NumType::I32);

    #[allow(warnings)]
    fn into_value(self) -> Value {
        Value::I32(u32::from_le_bytes(self.to_le_bytes()))
    }

    #[allow(warnings)]
    fn from_value(value: Value) -> Self {
        match value {
            Value::I32(i) => i32::from_le_bytes(i.to_le_bytes()),
            _ => unreachable_validated!(),
        }
    }
}

impl InteropValue for u64 {
    const TY: ValType = ValType::NumType(NumType::I64);

    #[allow(warnings)]
    fn into_value(self) -> Value {
        Value::I64(self)
    }

    #[allow(warnings)]
    fn from_value(value: Value) -> Self {
        match value {
            Value::I64(i) => i,
            _ => unreachable_validated!(),
        }
    }
}

impl InteropValue for i64 {
    const TY: ValType = ValType::NumType(NumType::I64);

    #[allow(warnings)]
    fn into_value(self) -> Value {
        Value::I64(u64::from_le_bytes(self.to_le_bytes()))
    }

    #[allow(warnings)]
    fn from_value(value: Value) -> Self {
        match value {
            Value::I64(i) => i64::from_le_bytes(i.to_le_bytes()),
            _ => unreachable_validated!(),
        }
    }
}

impl InteropValue for F32 {
    const TY: ValType = ValType::NumType(NumType::F32);

    #[allow(warnings)]
    fn into_value(self) -> Value {
        Value::F32(F32(f32::from_le_bytes(self.0.to_le_bytes())))
    }

    #[allow(warnings)]
    fn from_value(value: Value) -> Self {
        match value {
            Value::F32(f) => F32(f32::from_le_bytes(f.0.to_le_bytes())),
            _ => unreachable_validated!(),
        }
    }
}

impl InteropValue for f32 {
    const TY: ValType = ValType::NumType(NumType::F32);

    #[allow(warnings)]
    fn into_value(self) -> Value {
        Value::F32(F32(f32::from_le_bytes(self.to_le_bytes())))
    }

    #[allow(warnings)]
    fn from_value(value: Value) -> Self {
        match value {
            Value::F32(f) => f32::from_le_bytes(f.0.to_le_bytes()),
            _ => unreachable_validated!(),
        }
    }
}

impl InteropValue for F64 {
    const TY: ValType = ValType::NumType(NumType::F64);

    #[allow(warnings)]
    fn into_value(self) -> Value {
        Value::F64(F64(f64::from_le_bytes(self.0.to_le_bytes())))
    }

    #[allow(warnings)]
    fn from_value(value: Value) -> Self {
        match value {
            Value::F64(f) => F64(f64::from_le_bytes(f.0.to_le_bytes())),
            _ => unreachable_validated!(),
        }
    }
}

impl InteropValue for f64 {
    const TY: ValType = ValType::NumType(NumType::F64);

    #[allow(warnings)]
    fn into_value(self) -> Value {
        Value::F64(F64(f64::from_le_bytes(self.to_le_bytes())))
    }

    #[allow(warnings)]
    fn from_value(value: Value) -> Self {
        match value {
            Value::F64(f) => f64::from_le_bytes(f.0.to_le_bytes()),
            _ => unreachable_validated!(),
        }
    }
}

#[derive(PartialEq, Debug, Copy, Clone)]
pub struct FuncRefForInteropValue {
    rref: Ref,
}

impl FuncRefForInteropValue {
    pub fn new(rref: Ref) -> Result<Self> {
        match rref {
            Ref::Extern(_) => Err(Error::WrongRefTypeForInteropValue(
                RefType::ExternRef,
                RefType::FuncRef,
            )),
            Ref::Func(_) => Ok(Self { rref }),
        }
    }

    pub fn get_ref(&self) -> Ref {
        self.rref
    }
}

impl InteropValue for FuncRefForInteropValue {
    const TY: ValType = ValType::RefType(RefType::FuncRef);

    #[allow(warnings)]
    fn into_value(self) -> Value {
        Value::Ref(self.rref)
    }

    #[allow(warnings)]
    fn from_value(value: Value) -> Self {
        match value {
            Value::Ref(rref) => unsafe { FuncRefForInteropValue::new(rref).unwrap_unchecked() },
            _ => unreachable_validated!(),
        }
    }
}

impl InteropValueList for () {
    const TYS: &'static [ValType] = &[];

    #[allow(warnings)]
    fn into_values(self) -> Vec<Value> {
        Vec::new()
    }

    #[allow(warnings)]
    fn from_values(_values: impl Iterator<Item = Value>) -> Self {}
}

impl<A: InteropValue> InteropValueList for A {
    const TYS: &'static [ValType] = &[A::TY];

    #[allow(warnings)]
    fn into_values(self) -> Vec<Value> {
        vec![self.into_value()]
    }

    #[allow(warnings)]
    fn from_values(mut values: impl Iterator<Item = Value>) -> Self {
        A::from_value(values.next().unwrap_validated())
    }
}

impl<A: InteropValue> InteropValueList for (A,) {
    const TYS: &'static [ValType] = &[A::TY];
    #[allow(warnings)]
    fn into_values(self) -> Vec<Value> {
        vec![self.0.into_value()]
    }

    #[allow(warnings)]
    fn from_values(mut values: impl Iterator<Item = Value>) -> Self {
        (A::from_value(values.next().unwrap_validated()),)
    }
}

impl<A: InteropValue, B: InteropValue> InteropValueList for (A, B) {
    const TYS: &'static [ValType] = &[A::TY, B::TY];
    #[allow(warnings)]
    fn into_values(self) -> Vec<Value> {
        vec![self.0.into_value(), self.1.into_value()]
    }

    #[allow(warnings)]
    fn from_values(mut values: impl Iterator<Item = Value>) -> Self {
        (
            A::from_value(values.next().unwrap_validated()),
            B::from_value(values.next().unwrap_validated()),
        )
    }
}

impl<A: InteropValue, B: InteropValue, C: InteropValue> InteropValueList for (A, B, C) {
    const TYS: &'static [ValType] = &[A::TY, B::TY, C::TY];
    #[allow(warnings)]
    fn into_values(self) -> Vec<Value> {
        vec![
            self.0.into_value(),
            self.1.into_value(),
            self.2.into_value(),
        ]
    }

    #[allow(warnings)]
    fn from_values(mut values: impl Iterator<Item = Value>) -> Self {
        (
            A::from_value(values.next().unwrap_validated()),
            B::from_value(values.next().unwrap_validated()),
            C::from_value(values.next().unwrap_validated()),
        )
    }
}

// TODO: don't let this like this, use a macro
impl From<f32> for Value {
    fn from(x: f32) -> Self {
        F32(x).into_value()
    }
}

impl From<Value> for f32 {
    fn from(value: Value) -> Self {
        F32::from(value).0
    }
}

// TODO: don't let this like this, use a macro
impl From<f64> for Value {
    fn from(x: f64) -> Self {
        F64(x).into_value()
    }
}

impl From<Value> for f64 {
    fn from(value: Value) -> Self {
        F64::from(value).0
    }
}

/// Stupid From and Into implementations, because Rust's orphan rules won't let me define a generic impl:
macro_rules! impl_value_conversion {
    ($ty:ty) => {
        impl From<$ty> for Value {
            fn from(x: $ty) -> Self {
                x.into_value()
            }
        }
        impl From<Value> for $ty {
            fn from(value: Value) -> Self {
                <$ty>::from_value(value)
            }
        }
    };
}

impl_value_conversion!(u32);
impl_value_conversion!(i32);
impl_value_conversion!(u64);
impl_value_conversion!(i64);
impl_value_conversion!(F32);
impl_value_conversion!(F64);

impl From<Ref> for Value {
    fn from(value: Ref) -> Self {
        Self::Ref(value)
    }
}

impl From<Value> for Ref {
    fn from(value: Value) -> Self {
        match value {
            Value::Ref(rref) => rref,
            _ => unreachable!(),
        }
    }
}