/build/cargo-vendor-dir/regex-automata-0.4.9/src/util/captures.rs
Line | Count | Source |
1 | | /*! |
2 | | Provides types for dealing with capturing groups. |
3 | | |
4 | | Capturing groups refer to sub-patterns of regexes that some regex engines can |
5 | | report matching offsets for. For example, matching `[a-z]([0-9]+)` against |
6 | | `a789` would give `a789` as the overall match (for the implicit capturing group |
7 | | at index `0`) and `789` as the match for the capturing group `([0-9]+)` (an |
8 | | explicit capturing group at index `1`). |
9 | | |
10 | | Not all regex engines can report match offsets for capturing groups. Indeed, |
11 | | to a first approximation, regex engines that can report capturing group offsets |
12 | | tend to be quite a bit slower than regex engines that can't. This is because |
13 | | tracking capturing groups at search time usually requires more "power" that |
14 | | in turn adds overhead. |
15 | | |
16 | | Other regex implementations might call capturing groups "submatches." |
17 | | |
18 | | # Overview |
19 | | |
20 | | The main types in this module are: |
21 | | |
22 | | * [`Captures`] records the capturing group offsets found during a search. It |
23 | | provides convenience routines for looking up capturing group offsets by either |
24 | | index or name. |
25 | | * [`GroupInfo`] records the mapping between capturing groups and "slots," |
26 | | where the latter are how capturing groups are recorded during a regex search. |
27 | | This also keeps a mapping from capturing group name to index, and capture |
28 | | group index to name. A `GroupInfo` is used by `Captures` internally to |
29 | | provide a convenient API. It is unlikely that you'll use a `GroupInfo` |
30 | | directly, but for example, if you've compiled an Thompson NFA, then you can use |
31 | | [`thompson::NFA::group_info`](crate::nfa::thompson::NFA::group_info) to get its |
32 | | underlying `GroupInfo`. |
33 | | */ |
34 | | |
35 | | use alloc::{string::String, sync::Arc, vec, vec::Vec}; |
36 | | |
37 | | use crate::util::{ |
38 | | interpolate, |
39 | | primitives::{ |
40 | | NonMaxUsize, PatternID, PatternIDError, PatternIDIter, SmallIndex, |
41 | | }, |
42 | | search::{Match, Span}, |
43 | | }; |
44 | | |
45 | | /// The span offsets of capturing groups after a match has been found. |
46 | | /// |
47 | | /// This type represents the output of regex engines that can report the |
48 | | /// offsets at which capturing groups matches or "submatches" occur. For |
49 | | /// example, the [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM). When a match |
50 | | /// occurs, it will at minimum contain the [`PatternID`] of the pattern that |
51 | | /// matched. Depending upon how it was constructed, it may also contain the |
52 | | /// start/end offsets of the entire match of the pattern and the start/end |
53 | | /// offsets of each capturing group that participated in the match. |
54 | | /// |
55 | | /// Values of this type are always created for a specific [`GroupInfo`]. It is |
56 | | /// unspecified behavior to use a `Captures` value in a search with any regex |
57 | | /// engine that has a different `GroupInfo` than the one the `Captures` were |
58 | | /// created with. |
59 | | /// |
60 | | /// # Constructors |
61 | | /// |
62 | | /// There are three constructors for this type that control what kind of |
63 | | /// information is available upon a match: |
64 | | /// |
65 | | /// * [`Captures::all`]: Will store overall pattern match offsets in addition |
66 | | /// to the offsets of capturing groups that participated in the match. |
67 | | /// * [`Captures::matches`]: Will store only the overall pattern |
68 | | /// match offsets. The offsets of capturing groups (even ones that participated |
69 | | /// in the match) are not available. |
70 | | /// * [`Captures::empty`]: Will only store the pattern ID that matched. No |
71 | | /// match offsets are available at all. |
72 | | /// |
73 | | /// If you aren't sure which to choose, then pick the first one. The first one |
74 | | /// is what convenience routines like, |
75 | | /// [`PikeVM::create_captures`](crate::nfa::thompson::pikevm::PikeVM::create_captures), |
76 | | /// will use automatically. |
77 | | /// |
78 | | /// The main difference between these choices is performance. Namely, if you |
79 | | /// ask for _less_ information, then the execution of regex search may be able |
80 | | /// to run more quickly. |
81 | | /// |
82 | | /// # Notes |
83 | | /// |
84 | | /// It is worth pointing out that this type is not coupled to any one specific |
85 | | /// regex engine. Instead, its coupling is with [`GroupInfo`], which is the |
86 | | /// thing that is responsible for mapping capturing groups to "slot" offsets. |
87 | | /// Slot offsets are indices into a single sequence of memory at which matching |
88 | | /// haystack offsets for the corresponding group are written by regex engines. |
89 | | /// |
90 | | /// # Example |
91 | | /// |
92 | | /// This example shows how to parse a simple date and extract the components of |
93 | | /// the date via capturing groups: |
94 | | /// |
95 | | /// ``` |
96 | | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span}; |
97 | | /// |
98 | | /// let re = PikeVM::new(r"^([0-9]{4})-([0-9]{2})-([0-9]{2})$")?; |
99 | | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
100 | | /// |
101 | | /// re.captures(&mut cache, "2010-03-14", &mut caps); |
102 | | /// assert!(caps.is_match()); |
103 | | /// assert_eq!(Some(Span::from(0..4)), caps.get_group(1)); |
104 | | /// assert_eq!(Some(Span::from(5..7)), caps.get_group(2)); |
105 | | /// assert_eq!(Some(Span::from(8..10)), caps.get_group(3)); |
106 | | /// |
107 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
108 | | /// ``` |
109 | | /// |
110 | | /// # Example: named capturing groups |
111 | | /// |
112 | | /// This example is like the one above, but leverages the ability to name |
113 | | /// capturing groups in order to make the code a bit clearer: |
114 | | /// |
115 | | /// ``` |
116 | | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span}; |
117 | | /// |
118 | | /// let re = PikeVM::new(r"^(?P<y>[0-9]{4})-(?P<m>[0-9]{2})-(?P<d>[0-9]{2})$")?; |
119 | | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
120 | | /// |
121 | | /// re.captures(&mut cache, "2010-03-14", &mut caps); |
122 | | /// assert!(caps.is_match()); |
123 | | /// assert_eq!(Some(Span::from(0..4)), caps.get_group_by_name("y")); |
124 | | /// assert_eq!(Some(Span::from(5..7)), caps.get_group_by_name("m")); |
125 | | /// assert_eq!(Some(Span::from(8..10)), caps.get_group_by_name("d")); |
126 | | /// |
127 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
128 | | /// ``` |
129 | | #[derive(Clone)] |
130 | | pub struct Captures { |
131 | | /// The group info that these capture groups are coupled to. This is what |
132 | | /// gives the "convenience" of the `Captures` API. Namely, it provides the |
133 | | /// slot mapping and the name|-->index mapping for capture lookups by name. |
134 | | group_info: GroupInfo, |
135 | | /// The ID of the pattern that matched. Regex engines must set this to |
136 | | /// None when no match occurs. |
137 | | pid: Option<PatternID>, |
138 | | /// The slot values, i.e., submatch offsets. |
139 | | /// |
140 | | /// In theory, the smallest sequence of slots would be something like |
141 | | /// `max(groups(pattern) for pattern in regex) * 2`, but instead, we use |
142 | | /// `sum(groups(pattern) for pattern in regex) * 2`. Why? |
143 | | /// |
144 | | /// Well, the former could be used in theory, because we don't generally |
145 | | /// have any overlapping APIs that involve capturing groups. Therefore, |
146 | | /// there's technically never any need to have slots set for multiple |
147 | | /// patterns. However, this might change some day, in which case, we would |
148 | | /// need to have slots available. |
149 | | /// |
150 | | /// The other reason is that during the execution of some regex engines, |
151 | | /// there exists a point in time where multiple slots for different |
152 | | /// patterns may be written to before knowing which pattern has matched. |
153 | | /// Therefore, the regex engines themselves, in order to support multiple |
154 | | /// patterns correctly, must have all slots available. If `Captures` |
155 | | /// doesn't have all slots available, then regex engines can't write |
156 | | /// directly into the caller provided `Captures` and must instead write |
157 | | /// into some other storage and then copy the slots involved in the match |
158 | | /// at the end of the search. |
159 | | /// |
160 | | /// So overall, at least as of the time of writing, it seems like the path |
161 | | /// of least resistance is to just require allocating all possible slots |
162 | | /// instead of the conceptual minimum. Another way to justify this is that |
163 | | /// the most common case is a single pattern, in which case, there is no |
164 | | /// inefficiency here since the 'max' and 'sum' calculations above are |
165 | | /// equivalent in that case. |
166 | | /// |
167 | | /// N.B. The mapping from group index to slot is maintained by `GroupInfo` |
168 | | /// and is considered an API guarantee. See `GroupInfo` for more details on |
169 | | /// that mapping. |
170 | | /// |
171 | | /// N.B. `Option<NonMaxUsize>` has the same size as a `usize`. |
172 | | slots: Vec<Option<NonMaxUsize>>, |
173 | | } |
174 | | |
175 | | impl Captures { |
176 | | /// Create new storage for the offsets of all matching capturing groups. |
177 | | /// |
178 | | /// This routine provides the most information for matches---namely, the |
179 | | /// spans of matching capturing groups---but also requires the regex search |
180 | | /// routines to do the most work. |
181 | | /// |
182 | | /// It is unspecified behavior to use the returned `Captures` value in a |
183 | | /// search with a `GroupInfo` other than the one that is provided to this |
184 | | /// constructor. |
185 | | /// |
186 | | /// # Example |
187 | | /// |
188 | | /// This example shows that all capturing groups---but only ones that |
189 | | /// participated in a match---are available to query after a match has |
190 | | /// been found: |
191 | | /// |
192 | | /// ``` |
193 | | /// use regex_automata::{ |
194 | | /// nfa::thompson::pikevm::PikeVM, |
195 | | /// util::captures::Captures, |
196 | | /// Span, Match, |
197 | | /// }; |
198 | | /// |
199 | | /// let re = PikeVM::new( |
200 | | /// r"^(?:(?P<lower>[a-z]+)|(?P<upper>[A-Z]+))(?P<digits>[0-9]+)$", |
201 | | /// )?; |
202 | | /// let mut cache = re.create_cache(); |
203 | | /// let mut caps = Captures::all(re.get_nfa().group_info().clone()); |
204 | | /// |
205 | | /// re.captures(&mut cache, "ABC123", &mut caps); |
206 | | /// assert!(caps.is_match()); |
207 | | /// assert_eq!(Some(Match::must(0, 0..6)), caps.get_match()); |
208 | | /// // The 'lower' group didn't match, so it won't have any offsets. |
209 | | /// assert_eq!(None, caps.get_group_by_name("lower")); |
210 | | /// assert_eq!(Some(Span::from(0..3)), caps.get_group_by_name("upper")); |
211 | | /// assert_eq!(Some(Span::from(3..6)), caps.get_group_by_name("digits")); |
212 | | /// |
213 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
214 | | /// ``` |
215 | 2 | pub fn all(group_info: GroupInfo) -> Captures { |
216 | 2 | let slots = group_info.slot_len(); |
217 | 2 | Captures { group_info, pid: None, slots: vec![None; slots] } |
218 | 2 | } |
219 | | |
220 | | /// Create new storage for only the full match spans of a pattern. This |
221 | | /// does not include any capturing group offsets. |
222 | | /// |
223 | | /// It is unspecified behavior to use the returned `Captures` value in a |
224 | | /// search with a `GroupInfo` other than the one that is provided to this |
225 | | /// constructor. |
226 | | /// |
227 | | /// # Example |
228 | | /// |
229 | | /// This example shows that only overall match offsets are reported when |
230 | | /// this constructor is used. Accessing any capturing groups other than |
231 | | /// the 0th will always return `None`. |
232 | | /// |
233 | | /// ``` |
234 | | /// use regex_automata::{ |
235 | | /// nfa::thompson::pikevm::PikeVM, |
236 | | /// util::captures::Captures, |
237 | | /// Match, |
238 | | /// }; |
239 | | /// |
240 | | /// let re = PikeVM::new( |
241 | | /// r"^(?:(?P<lower>[a-z]+)|(?P<upper>[A-Z]+))(?P<digits>[0-9]+)$", |
242 | | /// )?; |
243 | | /// let mut cache = re.create_cache(); |
244 | | /// let mut caps = Captures::matches(re.get_nfa().group_info().clone()); |
245 | | /// |
246 | | /// re.captures(&mut cache, "ABC123", &mut caps); |
247 | | /// assert!(caps.is_match()); |
248 | | /// assert_eq!(Some(Match::must(0, 0..6)), caps.get_match()); |
249 | | /// // We didn't ask for capturing group offsets, so they aren't available. |
250 | | /// assert_eq!(None, caps.get_group_by_name("lower")); |
251 | | /// assert_eq!(None, caps.get_group_by_name("upper")); |
252 | | /// assert_eq!(None, caps.get_group_by_name("digits")); |
253 | | /// |
254 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
255 | | /// ``` |
256 | 0 | pub fn matches(group_info: GroupInfo) -> Captures { |
257 | 0 | // This is OK because we know there are at least this many slots, |
258 | 0 | // and GroupInfo construction guarantees that the number of slots fits |
259 | 0 | // into a usize. |
260 | 0 | let slots = group_info.pattern_len().checked_mul(2).unwrap(); |
261 | 0 | Captures { group_info, pid: None, slots: vec![None; slots] } |
262 | 0 | } |
263 | | |
264 | | /// Create new storage for only tracking which pattern matched. No offsets |
265 | | /// are stored at all. |
266 | | /// |
267 | | /// It is unspecified behavior to use the returned `Captures` value in a |
268 | | /// search with a `GroupInfo` other than the one that is provided to this |
269 | | /// constructor. |
270 | | /// |
271 | | /// # Example |
272 | | /// |
273 | | /// This example shows that only the pattern that matched can be accessed |
274 | | /// from a `Captures` value created via this constructor. |
275 | | /// |
276 | | /// ``` |
277 | | /// use regex_automata::{ |
278 | | /// nfa::thompson::pikevm::PikeVM, |
279 | | /// util::captures::Captures, |
280 | | /// PatternID, |
281 | | /// }; |
282 | | /// |
283 | | /// let re = PikeVM::new_many(&[r"[a-z]+", r"[A-Z]+"])?; |
284 | | /// let mut cache = re.create_cache(); |
285 | | /// let mut caps = Captures::empty(re.get_nfa().group_info().clone()); |
286 | | /// |
287 | | /// re.captures(&mut cache, "aABCz", &mut caps); |
288 | | /// assert!(caps.is_match()); |
289 | | /// assert_eq!(Some(PatternID::must(0)), caps.pattern()); |
290 | | /// // We didn't ask for any offsets, so they aren't available. |
291 | | /// assert_eq!(None, caps.get_match()); |
292 | | /// |
293 | | /// re.captures(&mut cache, &"aABCz"[1..], &mut caps); |
294 | | /// assert!(caps.is_match()); |
295 | | /// assert_eq!(Some(PatternID::must(1)), caps.pattern()); |
296 | | /// // We didn't ask for any offsets, so they aren't available. |
297 | | /// assert_eq!(None, caps.get_match()); |
298 | | /// |
299 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
300 | | /// ``` |
301 | 0 | pub fn empty(group_info: GroupInfo) -> Captures { |
302 | 0 | Captures { group_info, pid: None, slots: vec![] } |
303 | 0 | } |
304 | | |
305 | | /// Returns true if and only if this capturing group represents a match. |
306 | | /// |
307 | | /// This is a convenience routine for `caps.pattern().is_some()`. |
308 | | /// |
309 | | /// # Example |
310 | | /// |
311 | | /// When using the PikeVM (for example), the lightest weight way of |
312 | | /// detecting whether a match exists is to create capturing groups that |
313 | | /// only track the ID of the pattern that match (if any): |
314 | | /// |
315 | | /// ``` |
316 | | /// use regex_automata::{ |
317 | | /// nfa::thompson::pikevm::PikeVM, |
318 | | /// util::captures::Captures, |
319 | | /// }; |
320 | | /// |
321 | | /// let re = PikeVM::new(r"[a-z]+")?; |
322 | | /// let mut cache = re.create_cache(); |
323 | | /// let mut caps = Captures::empty(re.get_nfa().group_info().clone()); |
324 | | /// |
325 | | /// re.captures(&mut cache, "aABCz", &mut caps); |
326 | | /// assert!(caps.is_match()); |
327 | | /// |
328 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
329 | | /// ``` |
330 | | #[inline] |
331 | 0 | pub fn is_match(&self) -> bool { |
332 | 0 | self.pid.is_some() |
333 | 0 | } |
334 | | |
335 | | /// Returns the identifier of the pattern that matched when this |
336 | | /// capturing group represents a match. If no match was found, then this |
337 | | /// always returns `None`. |
338 | | /// |
339 | | /// This returns a pattern ID in precisely the cases in which `is_match` |
340 | | /// returns `true`. Similarly, the pattern ID returned is always the |
341 | | /// same pattern ID found in the `Match` returned by `get_match`. |
342 | | /// |
343 | | /// # Example |
344 | | /// |
345 | | /// When using the PikeVM (for example), the lightest weight way of |
346 | | /// detecting which pattern matched is to create capturing groups that only |
347 | | /// track the ID of the pattern that match (if any): |
348 | | /// |
349 | | /// ``` |
350 | | /// use regex_automata::{ |
351 | | /// nfa::thompson::pikevm::PikeVM, |
352 | | /// util::captures::Captures, |
353 | | /// PatternID, |
354 | | /// }; |
355 | | /// |
356 | | /// let re = PikeVM::new_many(&[r"[a-z]+", r"[A-Z]+"])?; |
357 | | /// let mut cache = re.create_cache(); |
358 | | /// let mut caps = Captures::empty(re.get_nfa().group_info().clone()); |
359 | | /// |
360 | | /// re.captures(&mut cache, "ABC", &mut caps); |
361 | | /// assert_eq!(Some(PatternID::must(1)), caps.pattern()); |
362 | | /// // Recall that offsets are only available when using a non-empty |
363 | | /// // Captures value. So even though a match occurred, this returns None! |
364 | | /// assert_eq!(None, caps.get_match()); |
365 | | /// |
366 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
367 | | /// ``` |
368 | | #[inline] |
369 | 0 | pub fn pattern(&self) -> Option<PatternID> { |
370 | 0 | self.pid |
371 | 0 | } |
372 | | |
373 | | /// Returns the pattern ID and the span of the match, if one occurred. |
374 | | /// |
375 | | /// This always returns `None` when `Captures` was created with |
376 | | /// [`Captures::empty`], even if a match was found. |
377 | | /// |
378 | | /// If this routine returns a non-`None` value, then `is_match` is |
379 | | /// guaranteed to return `true` and `pattern` is also guaranteed to return |
380 | | /// a non-`None` value. |
381 | | /// |
382 | | /// # Example |
383 | | /// |
384 | | /// This example shows how to get the full match from a search: |
385 | | /// |
386 | | /// ``` |
387 | | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Match}; |
388 | | /// |
389 | | /// let re = PikeVM::new_many(&[r"[a-z]+", r"[A-Z]+"])?; |
390 | | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
391 | | /// |
392 | | /// re.captures(&mut cache, "ABC", &mut caps); |
393 | | /// assert_eq!(Some(Match::must(1, 0..3)), caps.get_match()); |
394 | | /// |
395 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
396 | | /// ``` |
397 | | #[inline] |
398 | 0 | pub fn get_match(&self) -> Option<Match> { |
399 | 0 | Some(Match::new(self.pattern()?, self.get_group(0)?)) |
400 | 0 | } |
401 | | |
402 | | /// Returns the span of a capturing group match corresponding to the group |
403 | | /// index given, only if both the overall pattern matched and the capturing |
404 | | /// group participated in that match. |
405 | | /// |
406 | | /// This returns `None` if `index` is invalid. `index` is valid if and only |
407 | | /// if it's less than [`Captures::group_len`] for the matching pattern. |
408 | | /// |
409 | | /// This always returns `None` when `Captures` was created with |
410 | | /// [`Captures::empty`], even if a match was found. This also always |
411 | | /// returns `None` for any `index > 0` when `Captures` was created with |
412 | | /// [`Captures::matches`]. |
413 | | /// |
414 | | /// If this routine returns a non-`None` value, then `is_match` is |
415 | | /// guaranteed to return `true`, `pattern` is guaranteed to return a |
416 | | /// non-`None` value and `get_match` is guaranteed to return a non-`None` |
417 | | /// value. |
418 | | /// |
419 | | /// By convention, the 0th capture group will always return the same |
420 | | /// span as the span returned by `get_match`. This is because the 0th |
421 | | /// capture group always corresponds to the entirety of the pattern's |
422 | | /// match. (It is similarly always unnamed because it is implicit.) This |
423 | | /// isn't necessarily true of all regex engines. For example, one can |
424 | | /// hand-compile a [`thompson::NFA`](crate::nfa::thompson::NFA) via a |
425 | | /// [`thompson::Builder`](crate::nfa::thompson::Builder), which isn't |
426 | | /// technically forced to make the 0th capturing group always correspond to |
427 | | /// the entire match. |
428 | | /// |
429 | | /// # Example |
430 | | /// |
431 | | /// This example shows how to get the capturing groups, by index, from a |
432 | | /// match: |
433 | | /// |
434 | | /// ``` |
435 | | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
436 | | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span, Match}; |
437 | | /// |
438 | | /// let re = PikeVM::new(r"^(?P<first>\pL+)\s+(?P<last>\pL+)$")?; |
439 | | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
440 | | /// |
441 | | /// re.captures(&mut cache, "Bruce Springsteen", &mut caps); |
442 | | /// assert_eq!(Some(Match::must(0, 0..17)), caps.get_match()); |
443 | | /// assert_eq!(Some(Span::from(0..5)), caps.get_group(1)); |
444 | | /// assert_eq!(Some(Span::from(6..17)), caps.get_group(2)); |
445 | | /// // Looking for a non-existent capturing group will return None: |
446 | | /// assert_eq!(None, caps.get_group(3)); |
447 | | /// # // literals are too big for 32-bit usize: #1039 |
448 | | /// # #[cfg(target_pointer_width = "64")] |
449 | | /// assert_eq!(None, caps.get_group(9944060567225171988)); |
450 | | /// |
451 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
452 | | /// ``` |
453 | | #[inline] |
454 | 0 | pub fn get_group(&self, index: usize) -> Option<Span> { |
455 | 0 | let pid = self.pattern()?; |
456 | | // There's a little bit of work needed to map captures to slots in the |
457 | | // fully general case. But in the overwhelming common case of a single |
458 | | // pattern, we can just do some simple arithmetic. |
459 | 0 | let (slot_start, slot_end) = if self.group_info().pattern_len() == 1 { |
460 | 0 | (index.checked_mul(2)?, index.checked_mul(2)?.checked_add(1)?) |
461 | | } else { |
462 | 0 | self.group_info().slots(pid, index)? |
463 | | }; |
464 | 0 | let start = self.slots.get(slot_start).copied()??; |
465 | 0 | let end = self.slots.get(slot_end).copied()??; |
466 | 0 | Some(Span { start: start.get(), end: end.get() }) |
467 | 0 | } |
468 | | |
469 | | /// Returns the span of a capturing group match corresponding to the group |
470 | | /// name given, only if both the overall pattern matched and the capturing |
471 | | /// group participated in that match. |
472 | | /// |
473 | | /// This returns `None` if `name` does not correspond to a valid capturing |
474 | | /// group for the pattern that matched. |
475 | | /// |
476 | | /// This always returns `None` when `Captures` was created with |
477 | | /// [`Captures::empty`], even if a match was found. This also always |
478 | | /// returns `None` for any `index > 0` when `Captures` was created with |
479 | | /// [`Captures::matches`]. |
480 | | /// |
481 | | /// If this routine returns a non-`None` value, then `is_match` is |
482 | | /// guaranteed to return `true`, `pattern` is guaranteed to return a |
483 | | /// non-`None` value and `get_match` is guaranteed to return a non-`None` |
484 | | /// value. |
485 | | /// |
486 | | /// # Example |
487 | | /// |
488 | | /// This example shows how to get the capturing groups, by name, from a |
489 | | /// match: |
490 | | /// |
491 | | /// ``` |
492 | | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
493 | | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span, Match}; |
494 | | /// |
495 | | /// let re = PikeVM::new(r"^(?P<first>\pL+)\s+(?P<last>\pL+)$")?; |
496 | | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
497 | | /// |
498 | | /// re.captures(&mut cache, "Bruce Springsteen", &mut caps); |
499 | | /// assert_eq!(Some(Match::must(0, 0..17)), caps.get_match()); |
500 | | /// assert_eq!(Some(Span::from(0..5)), caps.get_group_by_name("first")); |
501 | | /// assert_eq!(Some(Span::from(6..17)), caps.get_group_by_name("last")); |
502 | | /// // Looking for a non-existent capturing group will return None: |
503 | | /// assert_eq!(None, caps.get_group_by_name("middle")); |
504 | | /// |
505 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
506 | | /// ``` |
507 | 0 | pub fn get_group_by_name(&self, name: &str) -> Option<Span> { |
508 | 0 | let index = self.group_info().to_index(self.pattern()?, name)?; |
509 | 0 | self.get_group(index) |
510 | 0 | } |
511 | | |
512 | | /// Returns an iterator of possible spans for every capturing group in the |
513 | | /// matching pattern. |
514 | | /// |
515 | | /// If this `Captures` value does not correspond to a match, then the |
516 | | /// iterator returned yields no elements. |
517 | | /// |
518 | | /// Note that the iterator returned yields elements of type `Option<Span>`. |
519 | | /// A span is present if and only if it corresponds to a capturing group |
520 | | /// that participated in a match. |
521 | | /// |
522 | | /// # Example |
523 | | /// |
524 | | /// This example shows how to collect all capturing groups: |
525 | | /// |
526 | | /// ``` |
527 | | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
528 | | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span}; |
529 | | /// |
530 | | /// let re = PikeVM::new( |
531 | | /// // Matches first/last names, with an optional middle name. |
532 | | /// r"^(?P<first>\pL+)\s+(?:(?P<middle>\pL+)\s+)?(?P<last>\pL+)$", |
533 | | /// )?; |
534 | | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
535 | | /// |
536 | | /// re.captures(&mut cache, "Harry James Potter", &mut caps); |
537 | | /// assert!(caps.is_match()); |
538 | | /// let groups: Vec<Option<Span>> = caps.iter().collect(); |
539 | | /// assert_eq!(groups, vec![ |
540 | | /// Some(Span::from(0..18)), |
541 | | /// Some(Span::from(0..5)), |
542 | | /// Some(Span::from(6..11)), |
543 | | /// Some(Span::from(12..18)), |
544 | | /// ]); |
545 | | /// |
546 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
547 | | /// ``` |
548 | | /// |
549 | | /// This example uses the same regex as the previous example, but with a |
550 | | /// haystack that omits the middle name. This results in a capturing group |
551 | | /// that is present in the elements yielded by the iterator but without a |
552 | | /// match: |
553 | | /// |
554 | | /// ``` |
555 | | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
556 | | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span}; |
557 | | /// |
558 | | /// let re = PikeVM::new( |
559 | | /// // Matches first/last names, with an optional middle name. |
560 | | /// r"^(?P<first>\pL+)\s+(?:(?P<middle>\pL+)\s+)?(?P<last>\pL+)$", |
561 | | /// )?; |
562 | | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
563 | | /// |
564 | | /// re.captures(&mut cache, "Harry Potter", &mut caps); |
565 | | /// assert!(caps.is_match()); |
566 | | /// let groups: Vec<Option<Span>> = caps.iter().collect(); |
567 | | /// assert_eq!(groups, vec![ |
568 | | /// Some(Span::from(0..12)), |
569 | | /// Some(Span::from(0..5)), |
570 | | /// None, |
571 | | /// Some(Span::from(6..12)), |
572 | | /// ]); |
573 | | /// |
574 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
575 | | /// ``` |
576 | 0 | pub fn iter(&self) -> CapturesPatternIter<'_> { |
577 | 0 | let names = self |
578 | 0 | .pattern() |
579 | 0 | .map_or(GroupInfoPatternNames::empty().enumerate(), |pid| { |
580 | 0 | self.group_info().pattern_names(pid).enumerate() |
581 | 0 | }); |
582 | 0 | CapturesPatternIter { caps: self, names } |
583 | 0 | } |
584 | | |
585 | | /// Return the total number of capturing groups for the matching pattern. |
586 | | /// |
587 | | /// If this `Captures` value does not correspond to a match, then this |
588 | | /// always returns `0`. |
589 | | /// |
590 | | /// This always returns the same number of elements yielded by |
591 | | /// [`Captures::iter`]. That is, the number includes capturing groups even |
592 | | /// if they don't participate in the match. |
593 | | /// |
594 | | /// # Example |
595 | | /// |
596 | | /// This example shows how to count the total number of capturing groups |
597 | | /// associated with a pattern. Notice that it includes groups that did not |
598 | | /// participate in a match (just like `Captures::iter` does). |
599 | | /// |
600 | | /// ``` |
601 | | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
602 | | /// use regex_automata::nfa::thompson::pikevm::PikeVM; |
603 | | /// |
604 | | /// let re = PikeVM::new( |
605 | | /// // Matches first/last names, with an optional middle name. |
606 | | /// r"^(?P<first>\pL+)\s+(?:(?P<middle>\pL+)\s+)?(?P<last>\pL+)$", |
607 | | /// )?; |
608 | | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
609 | | /// |
610 | | /// re.captures(&mut cache, "Harry Potter", &mut caps); |
611 | | /// assert_eq!(4, caps.group_len()); |
612 | | /// |
613 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
614 | | /// ``` |
615 | 0 | pub fn group_len(&self) -> usize { |
616 | 0 | let pid = match self.pattern() { |
617 | 0 | None => return 0, |
618 | 0 | Some(pid) => pid, |
619 | 0 | }; |
620 | 0 | self.group_info().group_len(pid) |
621 | 0 | } |
622 | | |
623 | | /// Returns a reference to the underlying group info on which these |
624 | | /// captures are based. |
625 | | /// |
626 | | /// The difference between `GroupInfo` and `Captures` is that the former |
627 | | /// defines the structure of capturing groups where as the latter is what |
628 | | /// stores the actual match information. So where as `Captures` only gives |
629 | | /// you access to the current match, `GroupInfo` lets you query any |
630 | | /// information about all capturing groups, even ones for patterns that |
631 | | /// weren't involved in a match. |
632 | | /// |
633 | | /// Note that a `GroupInfo` uses reference counting internally, so it may |
634 | | /// be cloned cheaply. |
635 | | /// |
636 | | /// # Example |
637 | | /// |
638 | | /// This example shows how to get all capturing group names from the |
639 | | /// underlying `GroupInfo`. Notice that we don't even need to run a |
640 | | /// search. |
641 | | /// |
642 | | /// ``` |
643 | | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID}; |
644 | | /// |
645 | | /// let re = PikeVM::new_many(&[ |
646 | | /// r"(?P<foo>a)", |
647 | | /// r"(a)(b)", |
648 | | /// r"ab", |
649 | | /// r"(?P<bar>a)(?P<quux>a)", |
650 | | /// r"(?P<foo>z)", |
651 | | /// ])?; |
652 | | /// let caps = re.create_captures(); |
653 | | /// |
654 | | /// let expected = vec![ |
655 | | /// (PatternID::must(0), 0, None), |
656 | | /// (PatternID::must(0), 1, Some("foo")), |
657 | | /// (PatternID::must(1), 0, None), |
658 | | /// (PatternID::must(1), 1, None), |
659 | | /// (PatternID::must(1), 2, None), |
660 | | /// (PatternID::must(2), 0, None), |
661 | | /// (PatternID::must(3), 0, None), |
662 | | /// (PatternID::must(3), 1, Some("bar")), |
663 | | /// (PatternID::must(3), 2, Some("quux")), |
664 | | /// (PatternID::must(4), 0, None), |
665 | | /// (PatternID::must(4), 1, Some("foo")), |
666 | | /// ]; |
667 | | /// // We could also just use 're.get_nfa().group_info()'. |
668 | | /// let got: Vec<(PatternID, usize, Option<&str>)> = |
669 | | /// caps.group_info().all_names().collect(); |
670 | | /// assert_eq!(expected, got); |
671 | | /// |
672 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
673 | | /// ``` |
674 | 0 | pub fn group_info(&self) -> &GroupInfo { |
675 | 0 | &self.group_info |
676 | 0 | } |
677 | | |
678 | | /// Interpolates the capture references in `replacement` with the |
679 | | /// corresponding substrings in `haystack` matched by each reference. The |
680 | | /// interpolated string is returned. |
681 | | /// |
682 | | /// See the [`interpolate` module](interpolate) for documentation on the |
683 | | /// format of the replacement string. |
684 | | /// |
685 | | /// # Example |
686 | | /// |
687 | | /// This example shows how to use interpolation, and also shows how it |
688 | | /// can work with multi-pattern regexes. |
689 | | /// |
690 | | /// ``` |
691 | | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID}; |
692 | | /// |
693 | | /// let re = PikeVM::new_many(&[ |
694 | | /// r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})", |
695 | | /// r"(?<year>[0-9]{4})-(?<month>[0-9]{2})-(?<day>[0-9]{2})", |
696 | | /// ])?; |
697 | | /// let mut cache = re.create_cache(); |
698 | | /// let mut caps = re.create_captures(); |
699 | | /// |
700 | | /// let replacement = "year=$year, month=$month, day=$day"; |
701 | | /// |
702 | | /// // This matches the first pattern. |
703 | | /// let hay = "On 14-03-2010, I became a Tenneessee lamb."; |
704 | | /// re.captures(&mut cache, hay, &mut caps); |
705 | | /// let result = caps.interpolate_string(hay, replacement); |
706 | | /// assert_eq!("year=2010, month=03, day=14", result); |
707 | | /// |
708 | | /// // And this matches the second pattern. |
709 | | /// let hay = "On 2010-03-14, I became a Tenneessee lamb."; |
710 | | /// re.captures(&mut cache, hay, &mut caps); |
711 | | /// let result = caps.interpolate_string(hay, replacement); |
712 | | /// assert_eq!("year=2010, month=03, day=14", result); |
713 | | /// |
714 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
715 | | /// ``` |
716 | 0 | pub fn interpolate_string( |
717 | 0 | &self, |
718 | 0 | haystack: &str, |
719 | 0 | replacement: &str, |
720 | 0 | ) -> String { |
721 | 0 | let mut dst = String::new(); |
722 | 0 | self.interpolate_string_into(haystack, replacement, &mut dst); |
723 | 0 | dst |
724 | 0 | } |
725 | | |
726 | | /// Interpolates the capture references in `replacement` with the |
727 | | /// corresponding substrings in `haystack` matched by each reference. The |
728 | | /// interpolated string is written to `dst`. |
729 | | /// |
730 | | /// See the [`interpolate` module](interpolate) for documentation on the |
731 | | /// format of the replacement string. |
732 | | /// |
733 | | /// # Example |
734 | | /// |
735 | | /// This example shows how to use interpolation, and also shows how it |
736 | | /// can work with multi-pattern regexes. |
737 | | /// |
738 | | /// ``` |
739 | | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID}; |
740 | | /// |
741 | | /// let re = PikeVM::new_many(&[ |
742 | | /// r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})", |
743 | | /// r"(?<year>[0-9]{4})-(?<month>[0-9]{2})-(?<day>[0-9]{2})", |
744 | | /// ])?; |
745 | | /// let mut cache = re.create_cache(); |
746 | | /// let mut caps = re.create_captures(); |
747 | | /// |
748 | | /// let replacement = "year=$year, month=$month, day=$day"; |
749 | | /// |
750 | | /// // This matches the first pattern. |
751 | | /// let hay = "On 14-03-2010, I became a Tenneessee lamb."; |
752 | | /// re.captures(&mut cache, hay, &mut caps); |
753 | | /// let mut dst = String::new(); |
754 | | /// caps.interpolate_string_into(hay, replacement, &mut dst); |
755 | | /// assert_eq!("year=2010, month=03, day=14", dst); |
756 | | /// |
757 | | /// // And this matches the second pattern. |
758 | | /// let hay = "On 2010-03-14, I became a Tenneessee lamb."; |
759 | | /// re.captures(&mut cache, hay, &mut caps); |
760 | | /// let mut dst = String::new(); |
761 | | /// caps.interpolate_string_into(hay, replacement, &mut dst); |
762 | | /// assert_eq!("year=2010, month=03, day=14", dst); |
763 | | /// |
764 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
765 | | /// ``` |
766 | 0 | pub fn interpolate_string_into( |
767 | 0 | &self, |
768 | 0 | haystack: &str, |
769 | 0 | replacement: &str, |
770 | 0 | dst: &mut String, |
771 | 0 | ) { |
772 | 0 | interpolate::string( |
773 | 0 | replacement, |
774 | 0 | |index, dst| { |
775 | 0 | let span = match self.get_group(index) { |
776 | 0 | None => return, |
777 | 0 | Some(span) => span, |
778 | 0 | }; |
779 | 0 | dst.push_str(&haystack[span]); |
780 | 0 | }, |
781 | 0 | |name| self.group_info().to_index(self.pattern()?, name), |
782 | 0 | dst, |
783 | 0 | ); |
784 | 0 | } |
785 | | |
786 | | /// Interpolates the capture references in `replacement` with the |
787 | | /// corresponding substrings in `haystack` matched by each reference. The |
788 | | /// interpolated byte string is returned. |
789 | | /// |
790 | | /// See the [`interpolate` module](interpolate) for documentation on the |
791 | | /// format of the replacement string. |
792 | | /// |
793 | | /// # Example |
794 | | /// |
795 | | /// This example shows how to use interpolation, and also shows how it |
796 | | /// can work with multi-pattern regexes. |
797 | | /// |
798 | | /// ``` |
799 | | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID}; |
800 | | /// |
801 | | /// let re = PikeVM::new_many(&[ |
802 | | /// r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})", |
803 | | /// r"(?<year>[0-9]{4})-(?<month>[0-9]{2})-(?<day>[0-9]{2})", |
804 | | /// ])?; |
805 | | /// let mut cache = re.create_cache(); |
806 | | /// let mut caps = re.create_captures(); |
807 | | /// |
808 | | /// let replacement = b"year=$year, month=$month, day=$day"; |
809 | | /// |
810 | | /// // This matches the first pattern. |
811 | | /// let hay = b"On 14-03-2010, I became a Tenneessee lamb."; |
812 | | /// re.captures(&mut cache, hay, &mut caps); |
813 | | /// let result = caps.interpolate_bytes(hay, replacement); |
814 | | /// assert_eq!(&b"year=2010, month=03, day=14"[..], result); |
815 | | /// |
816 | | /// // And this matches the second pattern. |
817 | | /// let hay = b"On 2010-03-14, I became a Tenneessee lamb."; |
818 | | /// re.captures(&mut cache, hay, &mut caps); |
819 | | /// let result = caps.interpolate_bytes(hay, replacement); |
820 | | /// assert_eq!(&b"year=2010, month=03, day=14"[..], result); |
821 | | /// |
822 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
823 | | /// ``` |
824 | 0 | pub fn interpolate_bytes( |
825 | 0 | &self, |
826 | 0 | haystack: &[u8], |
827 | 0 | replacement: &[u8], |
828 | 0 | ) -> Vec<u8> { |
829 | 0 | let mut dst = vec![]; |
830 | 0 | self.interpolate_bytes_into(haystack, replacement, &mut dst); |
831 | 0 | dst |
832 | 0 | } |
833 | | |
834 | | /// Interpolates the capture references in `replacement` with the |
835 | | /// corresponding substrings in `haystack` matched by each reference. The |
836 | | /// interpolated byte string is written to `dst`. |
837 | | /// |
838 | | /// See the [`interpolate` module](interpolate) for documentation on the |
839 | | /// format of the replacement string. |
840 | | /// |
841 | | /// # Example |
842 | | /// |
843 | | /// This example shows how to use interpolation, and also shows how it |
844 | | /// can work with multi-pattern regexes. |
845 | | /// |
846 | | /// ``` |
847 | | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID}; |
848 | | /// |
849 | | /// let re = PikeVM::new_many(&[ |
850 | | /// r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})", |
851 | | /// r"(?<year>[0-9]{4})-(?<month>[0-9]{2})-(?<day>[0-9]{2})", |
852 | | /// ])?; |
853 | | /// let mut cache = re.create_cache(); |
854 | | /// let mut caps = re.create_captures(); |
855 | | /// |
856 | | /// let replacement = b"year=$year, month=$month, day=$day"; |
857 | | /// |
858 | | /// // This matches the first pattern. |
859 | | /// let hay = b"On 14-03-2010, I became a Tenneessee lamb."; |
860 | | /// re.captures(&mut cache, hay, &mut caps); |
861 | | /// let mut dst = vec![]; |
862 | | /// caps.interpolate_bytes_into(hay, replacement, &mut dst); |
863 | | /// assert_eq!(&b"year=2010, month=03, day=14"[..], dst); |
864 | | /// |
865 | | /// // And this matches the second pattern. |
866 | | /// let hay = b"On 2010-03-14, I became a Tenneessee lamb."; |
867 | | /// re.captures(&mut cache, hay, &mut caps); |
868 | | /// let mut dst = vec![]; |
869 | | /// caps.interpolate_bytes_into(hay, replacement, &mut dst); |
870 | | /// assert_eq!(&b"year=2010, month=03, day=14"[..], dst); |
871 | | /// |
872 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
873 | | /// ``` |
874 | 0 | pub fn interpolate_bytes_into( |
875 | 0 | &self, |
876 | 0 | haystack: &[u8], |
877 | 0 | replacement: &[u8], |
878 | 0 | dst: &mut Vec<u8>, |
879 | 0 | ) { |
880 | 0 | interpolate::bytes( |
881 | 0 | replacement, |
882 | 0 | |index, dst| { |
883 | 0 | let span = match self.get_group(index) { |
884 | 0 | None => return, |
885 | 0 | Some(span) => span, |
886 | 0 | }; |
887 | 0 | dst.extend_from_slice(&haystack[span]); |
888 | 0 | }, |
889 | 0 | |name| self.group_info().to_index(self.pattern()?, name), |
890 | 0 | dst, |
891 | 0 | ); |
892 | 0 | } |
893 | | |
894 | | /// This is a convenience routine for extracting the substrings |
895 | | /// corresponding to matching capture groups in the given `haystack`. The |
896 | | /// `haystack` should be the same substring used to find the match spans in |
897 | | /// this `Captures` value. |
898 | | /// |
899 | | /// This is identical to [`Captures::extract_bytes`], except it works with |
900 | | /// `&str` instead of `&[u8]`. |
901 | | /// |
902 | | /// # Panics |
903 | | /// |
904 | | /// This panics if the number of explicit matching groups in this |
905 | | /// `Captures` value is less than `N`. This also panics if this `Captures` |
906 | | /// value does not correspond to a match. |
907 | | /// |
908 | | /// Note that this does *not* panic if the number of explicit matching |
909 | | /// groups is bigger than `N`. In that case, only the first `N` matching |
910 | | /// groups are extracted. |
911 | | /// |
912 | | /// # Example |
913 | | /// |
914 | | /// ``` |
915 | | /// use regex_automata::nfa::thompson::pikevm::PikeVM; |
916 | | /// |
917 | | /// let re = PikeVM::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})")?; |
918 | | /// let mut cache = re.create_cache(); |
919 | | /// let mut caps = re.create_captures(); |
920 | | /// |
921 | | /// let hay = "On 2010-03-14, I became a Tenneessee lamb."; |
922 | | /// re.captures(&mut cache, hay, &mut caps); |
923 | | /// assert!(caps.is_match()); |
924 | | /// let (full, [year, month, day]) = caps.extract(hay); |
925 | | /// assert_eq!("2010-03-14", full); |
926 | | /// assert_eq!("2010", year); |
927 | | /// assert_eq!("03", month); |
928 | | /// assert_eq!("14", day); |
929 | | /// |
930 | | /// // We can also ask for fewer than all capture groups. |
931 | | /// let (full, [year]) = caps.extract(hay); |
932 | | /// assert_eq!("2010-03-14", full); |
933 | | /// assert_eq!("2010", year); |
934 | | /// |
935 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
936 | | /// ``` |
937 | 0 | pub fn extract<'h, const N: usize>( |
938 | 0 | &self, |
939 | 0 | haystack: &'h str, |
940 | 0 | ) -> (&'h str, [&'h str; N]) { |
941 | 0 | let mut matched = self.iter().flatten(); |
942 | 0 | let whole_match = &haystack[matched.next().expect("a match")]; |
943 | 0 | let group_matches = [0; N].map(|_| { |
944 | 0 | let sp = matched.next().expect("too few matching groups"); |
945 | 0 | &haystack[sp] |
946 | 0 | }); |
947 | 0 | (whole_match, group_matches) |
948 | 0 | } |
949 | | |
950 | | /// This is a convenience routine for extracting the substrings |
951 | | /// corresponding to matching capture groups in the given `haystack`. The |
952 | | /// `haystack` should be the same substring used to find the match spans in |
953 | | /// this `Captures` value. |
954 | | /// |
955 | | /// This is identical to [`Captures::extract`], except it works with |
956 | | /// `&[u8]` instead of `&str`. |
957 | | /// |
958 | | /// # Panics |
959 | | /// |
960 | | /// This panics if the number of explicit matching groups in this |
961 | | /// `Captures` value is less than `N`. This also panics if this `Captures` |
962 | | /// value does not correspond to a match. |
963 | | /// |
964 | | /// Note that this does *not* panic if the number of explicit matching |
965 | | /// groups is bigger than `N`. In that case, only the first `N` matching |
966 | | /// groups are extracted. |
967 | | /// |
968 | | /// # Example |
969 | | /// |
970 | | /// ``` |
971 | | /// use regex_automata::nfa::thompson::pikevm::PikeVM; |
972 | | /// |
973 | | /// let re = PikeVM::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})")?; |
974 | | /// let mut cache = re.create_cache(); |
975 | | /// let mut caps = re.create_captures(); |
976 | | /// |
977 | | /// let hay = b"On 2010-03-14, I became a Tenneessee lamb."; |
978 | | /// re.captures(&mut cache, hay, &mut caps); |
979 | | /// assert!(caps.is_match()); |
980 | | /// let (full, [year, month, day]) = caps.extract_bytes(hay); |
981 | | /// assert_eq!(b"2010-03-14", full); |
982 | | /// assert_eq!(b"2010", year); |
983 | | /// assert_eq!(b"03", month); |
984 | | /// assert_eq!(b"14", day); |
985 | | /// |
986 | | /// // We can also ask for fewer than all capture groups. |
987 | | /// let (full, [year]) = caps.extract_bytes(hay); |
988 | | /// assert_eq!(b"2010-03-14", full); |
989 | | /// assert_eq!(b"2010", year); |
990 | | /// |
991 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
992 | | /// ``` |
993 | 0 | pub fn extract_bytes<'h, const N: usize>( |
994 | 0 | &self, |
995 | 0 | haystack: &'h [u8], |
996 | 0 | ) -> (&'h [u8], [&'h [u8]; N]) { |
997 | 0 | let mut matched = self.iter().flatten(); |
998 | 0 | let whole_match = &haystack[matched.next().expect("a match")]; |
999 | 0 | let group_matches = [0; N].map(|_| { |
1000 | 0 | let sp = matched.next().expect("too few matching groups"); |
1001 | 0 | &haystack[sp] |
1002 | 0 | }); |
1003 | 0 | (whole_match, group_matches) |
1004 | 0 | } |
1005 | | } |
1006 | | |
1007 | | /// Lower level "slot" oriented APIs. One does not typically need to use these |
1008 | | /// when executing a search. They are instead mostly intended for folks that |
1009 | | /// are writing their own regex engine while reusing this `Captures` type. |
1010 | | impl Captures { |
1011 | | /// Clear this `Captures` value. |
1012 | | /// |
1013 | | /// After clearing, all slots inside this `Captures` value will be set to |
1014 | | /// `None`. Similarly, any pattern ID that it was previously associated |
1015 | | /// with (for a match) is erased. |
1016 | | /// |
1017 | | /// It is not usually necessary to call this routine. Namely, a `Captures` |
1018 | | /// value only provides high level access to the capturing groups of the |
1019 | | /// pattern that matched, and only low level access to individual slots. |
1020 | | /// Thus, even if slots corresponding to groups that aren't associated |
1021 | | /// with the matching pattern are set, then it won't impact the higher |
1022 | | /// level APIs. Namely, higher level APIs like [`Captures::get_group`] will |
1023 | | /// return `None` if no pattern ID is present, even if there are spans set |
1024 | | /// in the underlying slots. |
1025 | | /// |
1026 | | /// Thus, to "clear" a `Captures` value of a match, it is usually only |
1027 | | /// necessary to call [`Captures::set_pattern`] with `None`. |
1028 | | /// |
1029 | | /// # Example |
1030 | | /// |
1031 | | /// This example shows what happens when a `Captures` value is cleared. |
1032 | | /// |
1033 | | /// ``` |
1034 | | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
1035 | | /// use regex_automata::nfa::thompson::pikevm::PikeVM; |
1036 | | /// |
1037 | | /// let re = PikeVM::new(r"^(?P<first>\pL+)\s+(?P<last>\pL+)$")?; |
1038 | | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
1039 | | /// |
1040 | | /// re.captures(&mut cache, "Bruce Springsteen", &mut caps); |
1041 | | /// assert!(caps.is_match()); |
1042 | | /// let slots: Vec<Option<usize>> = |
1043 | | /// caps.slots().iter().map(|s| s.map(|x| x.get())).collect(); |
1044 | | /// // Note that the following ordering is considered an API guarantee. |
1045 | | /// assert_eq!(slots, vec![ |
1046 | | /// Some(0), |
1047 | | /// Some(17), |
1048 | | /// Some(0), |
1049 | | /// Some(5), |
1050 | | /// Some(6), |
1051 | | /// Some(17), |
1052 | | /// ]); |
1053 | | /// |
1054 | | /// // Now clear the slots. Everything is gone and it is no longer a match. |
1055 | | /// caps.clear(); |
1056 | | /// assert!(!caps.is_match()); |
1057 | | /// let slots: Vec<Option<usize>> = |
1058 | | /// caps.slots().iter().map(|s| s.map(|x| x.get())).collect(); |
1059 | | /// assert_eq!(slots, vec![ |
1060 | | /// None, |
1061 | | /// None, |
1062 | | /// None, |
1063 | | /// None, |
1064 | | /// None, |
1065 | | /// None, |
1066 | | /// ]); |
1067 | | /// |
1068 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1069 | | /// ``` |
1070 | | #[inline] |
1071 | 0 | pub fn clear(&mut self) { |
1072 | 0 | self.pid = None; |
1073 | 0 | for slot in self.slots.iter_mut() { |
1074 | 0 | *slot = None; |
1075 | 0 | } |
1076 | 0 | } |
1077 | | |
1078 | | /// Set the pattern on this `Captures` value. |
1079 | | /// |
1080 | | /// When the pattern ID is `None`, then this `Captures` value does not |
1081 | | /// correspond to a match (`is_match` will return `false`). Otherwise, it |
1082 | | /// corresponds to a match. |
1083 | | /// |
1084 | | /// This is useful in search implementations where you might want to |
1085 | | /// initially call `set_pattern(None)` in order to avoid the cost of |
1086 | | /// calling `clear()` if it turns out to not be necessary. |
1087 | | /// |
1088 | | /// # Example |
1089 | | /// |
1090 | | /// This example shows that `set_pattern` merely overwrites the pattern ID. |
1091 | | /// It does not actually change the underlying slot values. |
1092 | | /// |
1093 | | /// ``` |
1094 | | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
1095 | | /// use regex_automata::nfa::thompson::pikevm::PikeVM; |
1096 | | /// |
1097 | | /// let re = PikeVM::new(r"^(?P<first>\pL+)\s+(?P<last>\pL+)$")?; |
1098 | | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
1099 | | /// |
1100 | | /// re.captures(&mut cache, "Bruce Springsteen", &mut caps); |
1101 | | /// assert!(caps.is_match()); |
1102 | | /// assert!(caps.pattern().is_some()); |
1103 | | /// let slots: Vec<Option<usize>> = |
1104 | | /// caps.slots().iter().map(|s| s.map(|x| x.get())).collect(); |
1105 | | /// // Note that the following ordering is considered an API guarantee. |
1106 | | /// assert_eq!(slots, vec![ |
1107 | | /// Some(0), |
1108 | | /// Some(17), |
1109 | | /// Some(0), |
1110 | | /// Some(5), |
1111 | | /// Some(6), |
1112 | | /// Some(17), |
1113 | | /// ]); |
1114 | | /// |
1115 | | /// // Now set the pattern to None. Note that the slot values remain. |
1116 | | /// caps.set_pattern(None); |
1117 | | /// assert!(!caps.is_match()); |
1118 | | /// assert!(!caps.pattern().is_some()); |
1119 | | /// let slots: Vec<Option<usize>> = |
1120 | | /// caps.slots().iter().map(|s| s.map(|x| x.get())).collect(); |
1121 | | /// // Note that the following ordering is considered an API guarantee. |
1122 | | /// assert_eq!(slots, vec![ |
1123 | | /// Some(0), |
1124 | | /// Some(17), |
1125 | | /// Some(0), |
1126 | | /// Some(5), |
1127 | | /// Some(6), |
1128 | | /// Some(17), |
1129 | | /// ]); |
1130 | | /// |
1131 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1132 | | /// ``` |
1133 | | #[inline] |
1134 | 0 | pub fn set_pattern(&mut self, pid: Option<PatternID>) { |
1135 | 0 | self.pid = pid; |
1136 | 0 | } |
1137 | | |
1138 | | /// Returns the underlying slots, where each slot stores a single offset. |
1139 | | /// |
1140 | | /// Every matching capturing group generally corresponds to two slots: one |
1141 | | /// slot for the starting position and another for the ending position. |
1142 | | /// Typically, either both are present or neither are. (The weasel word |
1143 | | /// "typically" is used here because it really depends on the regex engine |
1144 | | /// implementation. Every sensible regex engine likely adheres to this |
1145 | | /// invariant, and every regex engine in this crate is sensible.) |
1146 | | /// |
1147 | | /// Generally speaking, callers should prefer to use higher level routines |
1148 | | /// like [`Captures::get_match`] or [`Captures::get_group`]. |
1149 | | /// |
1150 | | /// An important note here is that a regex engine may not reset all of the |
1151 | | /// slots to `None` values when no match occurs, or even when a match of |
1152 | | /// a different pattern occurs. But this depends on how the regex engine |
1153 | | /// implementation deals with slots. |
1154 | | /// |
1155 | | /// # Example |
1156 | | /// |
1157 | | /// This example shows how to get the underlying slots from a regex match. |
1158 | | /// |
1159 | | /// ``` |
1160 | | /// use regex_automata::{ |
1161 | | /// nfa::thompson::pikevm::PikeVM, |
1162 | | /// util::primitives::{PatternID, NonMaxUsize}, |
1163 | | /// }; |
1164 | | /// |
1165 | | /// let re = PikeVM::new_many(&[ |
1166 | | /// r"[a-z]+", |
1167 | | /// r"[0-9]+", |
1168 | | /// ])?; |
1169 | | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
1170 | | /// |
1171 | | /// re.captures(&mut cache, "123", &mut caps); |
1172 | | /// assert_eq!(Some(PatternID::must(1)), caps.pattern()); |
1173 | | /// // Note that the only guarantee we have here is that slots 2 and 3 |
1174 | | /// // are set to correct values. The contents of the first two slots are |
1175 | | /// // unspecified since the 0th pattern did not match. |
1176 | | /// let expected = &[ |
1177 | | /// None, |
1178 | | /// None, |
1179 | | /// NonMaxUsize::new(0), |
1180 | | /// NonMaxUsize::new(3), |
1181 | | /// ]; |
1182 | | /// assert_eq!(expected, caps.slots()); |
1183 | | /// |
1184 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1185 | | /// ``` |
1186 | | #[inline] |
1187 | 0 | pub fn slots(&self) -> &[Option<NonMaxUsize>] { |
1188 | 0 | &self.slots |
1189 | 0 | } |
1190 | | |
1191 | | /// Returns the underlying slots as a mutable slice, where each slot stores |
1192 | | /// a single offset. |
1193 | | /// |
1194 | | /// This tends to be most useful for regex engine implementations for |
1195 | | /// writing offsets for matching capturing groups to slots. |
1196 | | /// |
1197 | | /// See [`Captures::slots`] for more information about slots. |
1198 | | #[inline] |
1199 | 0 | pub fn slots_mut(&mut self) -> &mut [Option<NonMaxUsize>] { |
1200 | 0 | &mut self.slots |
1201 | 0 | } |
1202 | | } |
1203 | | |
1204 | | impl core::fmt::Debug for Captures { |
1205 | 0 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
1206 | 0 | let mut dstruct = f.debug_struct("Captures"); |
1207 | 0 | dstruct.field("pid", &self.pid); |
1208 | 0 | if let Some(pid) = self.pid { |
1209 | 0 | dstruct.field("spans", &CapturesDebugMap { pid, caps: self }); |
1210 | 0 | } |
1211 | 0 | dstruct.finish() |
1212 | 0 | } |
1213 | | } |
1214 | | |
1215 | | /// A little helper type to provide a nice map-like debug representation for |
1216 | | /// our capturing group spans. |
1217 | | struct CapturesDebugMap<'a> { |
1218 | | pid: PatternID, |
1219 | | caps: &'a Captures, |
1220 | | } |
1221 | | |
1222 | | impl<'a> core::fmt::Debug for CapturesDebugMap<'a> { |
1223 | 0 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
1224 | | struct Key<'a>(usize, Option<&'a str>); |
1225 | | |
1226 | | impl<'a> core::fmt::Debug for Key<'a> { |
1227 | 0 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
1228 | 0 | write!(f, "{}", self.0)?; |
1229 | 0 | if let Some(name) = self.1 { |
1230 | 0 | write!(f, "/{:?}", name)?; |
1231 | 0 | } |
1232 | 0 | Ok(()) |
1233 | 0 | } |
1234 | | } |
1235 | | |
1236 | 0 | let mut map = f.debug_map(); |
1237 | 0 | let names = self.caps.group_info().pattern_names(self.pid); |
1238 | 0 | for (group_index, maybe_name) in names.enumerate() { |
1239 | 0 | let key = Key(group_index, maybe_name); |
1240 | 0 | match self.caps.get_group(group_index) { |
1241 | 0 | None => map.entry(&key, &None::<()>), |
1242 | 0 | Some(span) => map.entry(&key, &span), |
1243 | | }; |
1244 | | } |
1245 | 0 | map.finish() |
1246 | 0 | } |
1247 | | } |
1248 | | |
1249 | | /// An iterator over all capturing groups in a `Captures` value. |
1250 | | /// |
1251 | | /// This iterator includes capturing groups that did not participate in a |
1252 | | /// match. See the [`Captures::iter`] method documentation for more details |
1253 | | /// and examples. |
1254 | | /// |
1255 | | /// The lifetime parameter `'a` refers to the lifetime of the underlying |
1256 | | /// `Captures` value. |
1257 | | #[derive(Clone, Debug)] |
1258 | | pub struct CapturesPatternIter<'a> { |
1259 | | caps: &'a Captures, |
1260 | | names: core::iter::Enumerate<GroupInfoPatternNames<'a>>, |
1261 | | } |
1262 | | |
1263 | | impl<'a> Iterator for CapturesPatternIter<'a> { |
1264 | | type Item = Option<Span>; |
1265 | | |
1266 | 0 | fn next(&mut self) -> Option<Option<Span>> { |
1267 | 0 | let (group_index, _) = self.names.next()?; |
1268 | 0 | Some(self.caps.get_group(group_index)) |
1269 | 0 | } |
1270 | | |
1271 | 0 | fn size_hint(&self) -> (usize, Option<usize>) { |
1272 | 0 | self.names.size_hint() |
1273 | 0 | } |
1274 | | |
1275 | 0 | fn count(self) -> usize { |
1276 | 0 | self.names.count() |
1277 | 0 | } |
1278 | | } |
1279 | | |
1280 | | impl<'a> ExactSizeIterator for CapturesPatternIter<'a> {} |
1281 | | impl<'a> core::iter::FusedIterator for CapturesPatternIter<'a> {} |
1282 | | |
1283 | | /// Represents information about capturing groups in a compiled regex. |
1284 | | /// |
1285 | | /// The information encapsulated by this type consists of the following. For |
1286 | | /// each pattern: |
1287 | | /// |
1288 | | /// * A map from every capture group name to its corresponding capture group |
1289 | | /// index. |
1290 | | /// * A map from every capture group index to its corresponding capture group |
1291 | | /// name. |
1292 | | /// * A map from capture group index to its corresponding slot index. A slot |
1293 | | /// refers to one half of a capturing group. That is, a capture slot is either |
1294 | | /// the start or end of a capturing group. A slot is usually the mechanism |
1295 | | /// by which a regex engine records offsets for each capturing group during a |
1296 | | /// search. |
1297 | | /// |
1298 | | /// A `GroupInfo` uses reference counting internally and is thus cheap to |
1299 | | /// clone. |
1300 | | /// |
1301 | | /// # Mapping from capture groups to slots |
1302 | | /// |
1303 | | /// One of the main responsibilities of a `GroupInfo` is to build a mapping |
1304 | | /// from `(PatternID, u32)` (where the `u32` is a capture index) to something |
1305 | | /// called a "slot." As mentioned above, a slot refers to one half of a |
1306 | | /// capturing group. Both combined provide the start and end offsets of |
1307 | | /// a capturing group that participated in a match. |
1308 | | /// |
1309 | | /// **The mapping between group indices and slots is an API guarantee.** That |
1310 | | /// is, the mapping won't change within a semver compatible release. |
1311 | | /// |
1312 | | /// Slots exist primarily because this is a convenient mechanism by which |
1313 | | /// regex engines report group offsets at search time. For example, the |
1314 | | /// [`nfa::thompson::State::Capture`](crate::nfa::thompson::State::Capture) |
1315 | | /// NFA state includes the slot index. When a regex engine transitions through |
1316 | | /// this state, it will likely use the slot index to write the current haystack |
1317 | | /// offset to some region of memory. When a match is found, those slots are |
1318 | | /// then reported to the caller, typically via a convenient abstraction like a |
1319 | | /// [`Captures`] value. |
1320 | | /// |
1321 | | /// Because this crate provides first class support for multi-pattern regexes, |
1322 | | /// and because of some performance related reasons, the mapping between |
1323 | | /// capturing groups and slots is a little complex. However, in the case of a |
1324 | | /// single pattern, the mapping can be described very simply: for all capture |
1325 | | /// group indices `i`, its corresponding slots are at `i * 2` and `i * 2 + 1`. |
1326 | | /// Notice that the pattern ID isn't involved at all here, because it only |
1327 | | /// applies to a single-pattern regex, it is therefore always `0`. |
1328 | | /// |
1329 | | /// In the multi-pattern case, the mapping is a bit more complicated. To talk |
1330 | | /// about it, we must define what we mean by "implicit" vs "explicit" |
1331 | | /// capturing groups: |
1332 | | /// |
1333 | | /// * An **implicit** capturing group refers to the capturing group that is |
1334 | | /// present for every pattern automatically, and corresponds to the overall |
1335 | | /// match of a pattern. Every pattern has precisely one implicit capturing |
1336 | | /// group. It is always unnamed and it always corresponds to the capture group |
1337 | | /// index `0`. |
1338 | | /// * An **explicit** capturing group refers to any capturing group that |
1339 | | /// appears in the concrete syntax of the pattern. (Or, if an NFA was hand |
1340 | | /// built without any concrete syntax, it refers to any capturing group with an |
1341 | | /// index greater than `0`.) |
1342 | | /// |
1343 | | /// Some examples: |
1344 | | /// |
1345 | | /// * `\w+` has one implicit capturing group and zero explicit capturing |
1346 | | /// groups. |
1347 | | /// * `(\w+)` has one implicit group and one explicit group. |
1348 | | /// * `foo(\d+)(?:\pL+)(\d+)` has one implicit group and two explicit groups. |
1349 | | /// |
1350 | | /// Turning back to the slot mapping, we can now state it as follows: |
1351 | | /// |
1352 | | /// * Given a pattern ID `pid`, the slots for its implicit group are always |
1353 | | /// at `pid * 2` and `pid * 2 + 1`. |
1354 | | /// * Given a pattern ID `0`, the slots for its explicit groups start |
1355 | | /// at `group_info.pattern_len() * 2`. |
1356 | | /// * Given a pattern ID `pid > 0`, the slots for its explicit groups start |
1357 | | /// immediately following where the slots for the explicit groups of `pid - 1` |
1358 | | /// end. |
1359 | | /// |
1360 | | /// In particular, while there is a concrete formula one can use to determine |
1361 | | /// where the slots for the implicit group of any pattern are, there is no |
1362 | | /// general formula for determining where the slots for explicit capturing |
1363 | | /// groups are. This is because each pattern can contain a different number |
1364 | | /// of groups. |
1365 | | /// |
1366 | | /// The intended way of getting the slots for a particular capturing group |
1367 | | /// (whether implicit or explicit) is via the [`GroupInfo::slot`] or |
1368 | | /// [`GroupInfo::slots`] method. |
1369 | | /// |
1370 | | /// See below for a concrete example of how capturing groups get mapped to |
1371 | | /// slots. |
1372 | | /// |
1373 | | /// # Example |
1374 | | /// |
1375 | | /// This example shows how to build a new `GroupInfo` and query it for |
1376 | | /// information. |
1377 | | /// |
1378 | | /// ``` |
1379 | | /// use regex_automata::util::{captures::GroupInfo, primitives::PatternID}; |
1380 | | /// |
1381 | | /// let info = GroupInfo::new(vec![ |
1382 | | /// vec![None, Some("foo")], |
1383 | | /// vec![None], |
1384 | | /// vec![None, None, None, Some("bar"), None], |
1385 | | /// vec![None, None, Some("foo")], |
1386 | | /// ])?; |
1387 | | /// // The number of patterns being tracked. |
1388 | | /// assert_eq!(4, info.pattern_len()); |
1389 | | /// // We can query the number of groups for any pattern. |
1390 | | /// assert_eq!(2, info.group_len(PatternID::must(0))); |
1391 | | /// assert_eq!(1, info.group_len(PatternID::must(1))); |
1392 | | /// assert_eq!(5, info.group_len(PatternID::must(2))); |
1393 | | /// assert_eq!(3, info.group_len(PatternID::must(3))); |
1394 | | /// // An invalid pattern always has zero groups. |
1395 | | /// assert_eq!(0, info.group_len(PatternID::must(999))); |
1396 | | /// // 2 slots per group |
1397 | | /// assert_eq!(22, info.slot_len()); |
1398 | | /// |
1399 | | /// // We can map a group index for a particular pattern to its name, if |
1400 | | /// // one exists. |
1401 | | /// assert_eq!(Some("foo"), info.to_name(PatternID::must(3), 2)); |
1402 | | /// assert_eq!(None, info.to_name(PatternID::must(2), 4)); |
1403 | | /// // Or map a name to its group index. |
1404 | | /// assert_eq!(Some(1), info.to_index(PatternID::must(0), "foo")); |
1405 | | /// assert_eq!(Some(2), info.to_index(PatternID::must(3), "foo")); |
1406 | | /// |
1407 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1408 | | /// ``` |
1409 | | /// |
1410 | | /// # Example: mapping from capture groups to slots |
1411 | | /// |
1412 | | /// This example shows the specific mapping from capture group indices for |
1413 | | /// each pattern to their corresponding slots. The slot values shown in this |
1414 | | /// example are considered an API guarantee. |
1415 | | /// |
1416 | | /// ``` |
1417 | | /// use regex_automata::util::{captures::GroupInfo, primitives::PatternID}; |
1418 | | /// |
1419 | | /// let info = GroupInfo::new(vec![ |
1420 | | /// vec![None, Some("foo")], |
1421 | | /// vec![None], |
1422 | | /// vec![None, None, None, Some("bar"), None], |
1423 | | /// vec![None, None, Some("foo")], |
1424 | | /// ])?; |
1425 | | /// |
1426 | | /// // We first show the slots for each pattern's implicit group. |
1427 | | /// assert_eq!(Some((0, 1)), info.slots(PatternID::must(0), 0)); |
1428 | | /// assert_eq!(Some((2, 3)), info.slots(PatternID::must(1), 0)); |
1429 | | /// assert_eq!(Some((4, 5)), info.slots(PatternID::must(2), 0)); |
1430 | | /// assert_eq!(Some((6, 7)), info.slots(PatternID::must(3), 0)); |
1431 | | /// |
1432 | | /// // And now we show the slots for each pattern's explicit group. |
1433 | | /// assert_eq!(Some((8, 9)), info.slots(PatternID::must(0), 1)); |
1434 | | /// assert_eq!(Some((10, 11)), info.slots(PatternID::must(2), 1)); |
1435 | | /// assert_eq!(Some((12, 13)), info.slots(PatternID::must(2), 2)); |
1436 | | /// assert_eq!(Some((14, 15)), info.slots(PatternID::must(2), 3)); |
1437 | | /// assert_eq!(Some((16, 17)), info.slots(PatternID::must(2), 4)); |
1438 | | /// assert_eq!(Some((18, 19)), info.slots(PatternID::must(3), 1)); |
1439 | | /// assert_eq!(Some((20, 21)), info.slots(PatternID::must(3), 2)); |
1440 | | /// |
1441 | | /// // Asking for the slots for an invalid pattern ID or even for an invalid |
1442 | | /// // group index for a specific pattern will return None. So for example, |
1443 | | /// // you're guaranteed to not get the slots for a different pattern than the |
1444 | | /// // one requested. |
1445 | | /// assert_eq!(None, info.slots(PatternID::must(5), 0)); |
1446 | | /// assert_eq!(None, info.slots(PatternID::must(1), 1)); |
1447 | | /// |
1448 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1449 | | /// ``` |
1450 | | #[derive(Clone, Debug, Default)] |
1451 | | pub struct GroupInfo(Arc<GroupInfoInner>); |
1452 | | |
1453 | | impl GroupInfo { |
1454 | | /// Creates a new group info from a sequence of patterns, where each |
1455 | | /// sequence of patterns yields a sequence of possible group names. The |
1456 | | /// index of each pattern in the sequence corresponds to its `PatternID`, |
1457 | | /// and the index of each group in each pattern's sequence corresponds to |
1458 | | /// its corresponding group index. |
1459 | | /// |
1460 | | /// While this constructor is very generic and therefore perhaps hard to |
1461 | | /// chew on, an example of a valid concrete type that can be passed to |
1462 | | /// this constructor is `Vec<Vec<Option<String>>>`. The outer `Vec` |
1463 | | /// corresponds to the patterns, i.e., one `Vec<Option<String>>` per |
1464 | | /// pattern. The inner `Vec` corresponds to the capturing groups for |
1465 | | /// each pattern. The `Option<String>` corresponds to the name of the |
1466 | | /// capturing group, if present. |
1467 | | /// |
1468 | | /// It is legal to pass an empty iterator to this constructor. It will |
1469 | | /// return an empty group info with zero slots. An empty group info is |
1470 | | /// useful for cases where you have no patterns or for cases where slots |
1471 | | /// aren't being used at all (e.g., for most DFAs in this crate). |
1472 | | /// |
1473 | | /// # Errors |
1474 | | /// |
1475 | | /// This constructor returns an error if the given capturing groups are |
1476 | | /// invalid in some way. Those reasons include, but are not necessarily |
1477 | | /// limited to: |
1478 | | /// |
1479 | | /// * Too many patterns (i.e., `PatternID` would overflow). |
1480 | | /// * Too many capturing groups (e.g., `u32` would overflow). |
1481 | | /// * A pattern is given that has no capturing groups. (All patterns must |
1482 | | /// have at least an implicit capturing group at index `0`.) |
1483 | | /// * The capturing group at index `0` has a name. It must be unnamed. |
1484 | | /// * There are duplicate capturing group names within the same pattern. |
1485 | | /// (Multiple capturing groups with the same name may exist, but they |
1486 | | /// must be in different patterns.) |
1487 | | /// |
1488 | | /// An example below shows how to trigger some of the above error |
1489 | | /// conditions. |
1490 | | /// |
1491 | | /// # Example |
1492 | | /// |
1493 | | /// This example shows how to build a new `GroupInfo` and query it for |
1494 | | /// information. |
1495 | | /// |
1496 | | /// ``` |
1497 | | /// use regex_automata::util::captures::GroupInfo; |
1498 | | /// |
1499 | | /// let info = GroupInfo::new(vec![ |
1500 | | /// vec![None, Some("foo")], |
1501 | | /// vec![None], |
1502 | | /// vec![None, None, None, Some("bar"), None], |
1503 | | /// vec![None, None, Some("foo")], |
1504 | | /// ])?; |
1505 | | /// // The number of patterns being tracked. |
1506 | | /// assert_eq!(4, info.pattern_len()); |
1507 | | /// // 2 slots per group |
1508 | | /// assert_eq!(22, info.slot_len()); |
1509 | | /// |
1510 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1511 | | /// ``` |
1512 | | /// |
1513 | | /// # Example: empty `GroupInfo` |
1514 | | /// |
1515 | | /// This example shows how to build a new `GroupInfo` and query it for |
1516 | | /// information. |
1517 | | /// |
1518 | | /// ``` |
1519 | | /// use regex_automata::util::captures::GroupInfo; |
1520 | | /// |
1521 | | /// let info = GroupInfo::empty(); |
1522 | | /// // Everything is zero. |
1523 | | /// assert_eq!(0, info.pattern_len()); |
1524 | | /// assert_eq!(0, info.slot_len()); |
1525 | | /// |
1526 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1527 | | /// ``` |
1528 | | /// |
1529 | | /// # Example: error conditions |
1530 | | /// |
1531 | | /// This example shows how to provoke some of the ways in which building |
1532 | | /// a `GroupInfo` can fail. |
1533 | | /// |
1534 | | /// ``` |
1535 | | /// use regex_automata::util::captures::GroupInfo; |
1536 | | /// |
1537 | | /// // Either the group info is empty, or all patterns must have at least |
1538 | | /// // one capturing group. |
1539 | | /// assert!(GroupInfo::new(vec![ |
1540 | | /// vec![None, Some("a")], // ok |
1541 | | /// vec![None], // ok |
1542 | | /// vec![], // not ok |
1543 | | /// ]).is_err()); |
1544 | | /// // Note that building an empty group info is OK. |
1545 | | /// assert!(GroupInfo::new(Vec::<Vec<Option<String>>>::new()).is_ok()); |
1546 | | /// |
1547 | | /// // The first group in each pattern must correspond to an implicit |
1548 | | /// // anonymous group. i.e., One that is not named. By convention, this |
1549 | | /// // group corresponds to the overall match of a regex. Every other group |
1550 | | /// // in a pattern is explicit and optional. |
1551 | | /// assert!(GroupInfo::new(vec![vec![Some("foo")]]).is_err()); |
1552 | | /// |
1553 | | /// // There must not be duplicate group names within the same pattern. |
1554 | | /// assert!(GroupInfo::new(vec![ |
1555 | | /// vec![None, Some("foo"), Some("foo")], |
1556 | | /// ]).is_err()); |
1557 | | /// // But duplicate names across distinct patterns is OK. |
1558 | | /// assert!(GroupInfo::new(vec![ |
1559 | | /// vec![None, Some("foo")], |
1560 | | /// vec![None, Some("foo")], |
1561 | | /// ]).is_ok()); |
1562 | | /// |
1563 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1564 | | /// ``` |
1565 | | /// |
1566 | | /// There are other ways for building a `GroupInfo` to fail but are |
1567 | | /// difficult to show. For example, if the number of patterns given would |
1568 | | /// overflow `PatternID`. |
1569 | 4 | pub fn new<P, G, N>(pattern_groups: P) -> Result<GroupInfo, GroupInfoError> |
1570 | 4 | where |
1571 | 4 | P: IntoIterator<Item = G>, |
1572 | 4 | G: IntoIterator<Item = Option<N>>, |
1573 | 4 | N: AsRef<str>, |
1574 | 4 | { |
1575 | 4 | let mut group_info = GroupInfoInner { |
1576 | 4 | slot_ranges: vec![], |
1577 | 4 | name_to_index: vec![], |
1578 | 4 | index_to_name: vec![], |
1579 | 4 | memory_extra: 0, |
1580 | 4 | }; |
1581 | 4 | for (pattern_index, groups2 ) in pattern_groups.into_iter().enumerate() { |
1582 | | // If we can't convert the pattern index to an ID, then the caller |
1583 | | // tried to build capture info for too many patterns. |
1584 | 2 | let pid = PatternID::new(pattern_index) |
1585 | 2 | .map_err(GroupInfoError::too_many_patterns)?0 ; |
1586 | | |
1587 | 2 | let mut groups_iter = groups.into_iter().enumerate(); |
1588 | 2 | match groups_iter.next() { |
1589 | 0 | None => return Err(GroupInfoError::missing_groups(pid)), |
1590 | | Some((_, Some(_))) => { |
1591 | 0 | return Err(GroupInfoError::first_must_be_unnamed(pid)) |
1592 | | } |
1593 | 2 | Some((_, None)) => {} |
1594 | 2 | } |
1595 | 2 | group_info.add_first_group(pid); |
1596 | | // Now iterate over the rest, which correspond to all of the |
1597 | | // (conventionally) explicit capture groups in a regex pattern. |
1598 | 3 | for (group_index, maybe_name1 ) in groups_iter { |
1599 | | // Just like for patterns, if the group index can't be |
1600 | | // converted to a "small" index, then the caller has given too |
1601 | | // many groups for a particular pattern. |
1602 | 1 | let group = SmallIndex::new(group_index).map_err(|_| { |
1603 | 0 | GroupInfoError::too_many_groups(pid, group_index) |
1604 | 1 | })?0 ; |
1605 | 1 | group_info.add_explicit_group(pid, group, maybe_name)?0 ; |
1606 | | } |
1607 | | } |
1608 | 4 | group_info.fixup_slot_ranges()?0 ; |
1609 | 4 | Ok(GroupInfo(Arc::new(group_info))) |
1610 | 4 | } |
1611 | | |
1612 | | /// This creates an empty `GroupInfo`. |
1613 | | /// |
1614 | | /// This is a convenience routine for calling `GroupInfo::new` with an |
1615 | | /// iterator that yields no elements. |
1616 | | /// |
1617 | | /// # Example |
1618 | | /// |
1619 | | /// This example shows how to build a new empty `GroupInfo` and query it |
1620 | | /// for information. |
1621 | | /// |
1622 | | /// ``` |
1623 | | /// use regex_automata::util::captures::GroupInfo; |
1624 | | /// |
1625 | | /// let info = GroupInfo::empty(); |
1626 | | /// // Everything is zero. |
1627 | | /// assert_eq!(0, info.pattern_len()); |
1628 | | /// assert_eq!(0, info.all_group_len()); |
1629 | | /// assert_eq!(0, info.slot_len()); |
1630 | | /// |
1631 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1632 | | /// ``` |
1633 | 0 | pub fn empty() -> GroupInfo { |
1634 | 0 | GroupInfo::new(core::iter::empty::<[Option<&str>; 0]>()) |
1635 | 0 | .expect("empty group info is always valid") |
1636 | 0 | } |
1637 | | |
1638 | | /// Return the capture group index corresponding to the given name in the |
1639 | | /// given pattern. If no such capture group name exists in the given |
1640 | | /// pattern, then this returns `None`. |
1641 | | /// |
1642 | | /// If the given pattern ID is invalid, then this returns `None`. |
1643 | | /// |
1644 | | /// This also returns `None` for all inputs if these captures are empty |
1645 | | /// (e.g., built from an empty [`GroupInfo`]). To check whether captures |
1646 | | /// are present for a specific pattern, use [`GroupInfo::group_len`]. |
1647 | | /// |
1648 | | /// # Example |
1649 | | /// |
1650 | | /// This example shows how to find the capture index for the given pattern |
1651 | | /// and group name. |
1652 | | /// |
1653 | | /// Remember that capture indices are relative to the pattern, such that |
1654 | | /// the same capture index value may refer to different capturing groups |
1655 | | /// for distinct patterns. |
1656 | | /// |
1657 | | /// ``` |
1658 | | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
1659 | | /// use regex_automata::{nfa::thompson::NFA, PatternID}; |
1660 | | /// |
1661 | | /// let (pid0, pid1) = (PatternID::must(0), PatternID::must(1)); |
1662 | | /// |
1663 | | /// let nfa = NFA::new_many(&[ |
1664 | | /// r"a(?P<quux>\w+)z(?P<foo>\s+)", |
1665 | | /// r"a(?P<foo>\d+)z", |
1666 | | /// ])?; |
1667 | | /// let groups = nfa.group_info(); |
1668 | | /// assert_eq!(Some(2), groups.to_index(pid0, "foo")); |
1669 | | /// // Recall that capture index 0 is always unnamed and refers to the |
1670 | | /// // entire pattern. So the first capturing group present in the pattern |
1671 | | /// // itself always starts at index 1. |
1672 | | /// assert_eq!(Some(1), groups.to_index(pid1, "foo")); |
1673 | | /// |
1674 | | /// // And if a name does not exist for a particular pattern, None is |
1675 | | /// // returned. |
1676 | | /// assert!(groups.to_index(pid0, "quux").is_some()); |
1677 | | /// assert!(groups.to_index(pid1, "quux").is_none()); |
1678 | | /// |
1679 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1680 | | /// ``` |
1681 | | #[inline] |
1682 | 0 | pub fn to_index(&self, pid: PatternID, name: &str) -> Option<usize> { |
1683 | 0 | let indices = self.0.name_to_index.get(pid.as_usize())?; |
1684 | 0 | indices.get(name).cloned().map(|i| i.as_usize()) |
1685 | 0 | } |
1686 | | |
1687 | | /// Return the capture name for the given index and given pattern. If the |
1688 | | /// corresponding group does not have a name, then this returns `None`. |
1689 | | /// |
1690 | | /// If the pattern ID is invalid, then this returns `None`. |
1691 | | /// |
1692 | | /// If the group index is invalid for the given pattern, then this returns |
1693 | | /// `None`. A group `index` is valid for a pattern `pid` in an `nfa` if and |
1694 | | /// only if `index < nfa.pattern_capture_len(pid)`. |
1695 | | /// |
1696 | | /// This also returns `None` for all inputs if these captures are empty |
1697 | | /// (e.g., built from an empty [`GroupInfo`]). To check whether captures |
1698 | | /// are present for a specific pattern, use [`GroupInfo::group_len`]. |
1699 | | /// |
1700 | | /// # Example |
1701 | | /// |
1702 | | /// This example shows how to find the capture group name for the given |
1703 | | /// pattern and group index. |
1704 | | /// |
1705 | | /// ``` |
1706 | | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
1707 | | /// use regex_automata::{nfa::thompson::NFA, PatternID}; |
1708 | | /// |
1709 | | /// let (pid0, pid1) = (PatternID::must(0), PatternID::must(1)); |
1710 | | /// |
1711 | | /// let nfa = NFA::new_many(&[ |
1712 | | /// r"a(?P<foo>\w+)z(\s+)x(\d+)", |
1713 | | /// r"a(\d+)z(?P<foo>\s+)", |
1714 | | /// ])?; |
1715 | | /// let groups = nfa.group_info(); |
1716 | | /// assert_eq!(None, groups.to_name(pid0, 0)); |
1717 | | /// assert_eq!(Some("foo"), groups.to_name(pid0, 1)); |
1718 | | /// assert_eq!(None, groups.to_name(pid0, 2)); |
1719 | | /// assert_eq!(None, groups.to_name(pid0, 3)); |
1720 | | /// |
1721 | | /// assert_eq!(None, groups.to_name(pid1, 0)); |
1722 | | /// assert_eq!(None, groups.to_name(pid1, 1)); |
1723 | | /// assert_eq!(Some("foo"), groups.to_name(pid1, 2)); |
1724 | | /// // '3' is not a valid capture index for the second pattern. |
1725 | | /// assert_eq!(None, groups.to_name(pid1, 3)); |
1726 | | /// |
1727 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1728 | | /// ``` |
1729 | | #[inline] |
1730 | 0 | pub fn to_name(&self, pid: PatternID, group_index: usize) -> Option<&str> { |
1731 | 0 | let pattern_names = self.0.index_to_name.get(pid.as_usize())?; |
1732 | 0 | pattern_names.get(group_index)?.as_deref() |
1733 | 0 | } |
1734 | | |
1735 | | /// Return an iterator of all capture groups and their names (if present) |
1736 | | /// for a particular pattern. |
1737 | | /// |
1738 | | /// If the given pattern ID is invalid or if this `GroupInfo` is empty, |
1739 | | /// then the iterator yields no elements. |
1740 | | /// |
1741 | | /// The number of elements yielded by this iterator is always equal to |
1742 | | /// the result of calling [`GroupInfo::group_len`] with the same |
1743 | | /// `PatternID`. |
1744 | | /// |
1745 | | /// # Example |
1746 | | /// |
1747 | | /// This example shows how to get a list of all capture group names for |
1748 | | /// a particular pattern. |
1749 | | /// |
1750 | | /// ``` |
1751 | | /// use regex_automata::{nfa::thompson::NFA, PatternID}; |
1752 | | /// |
1753 | | /// let nfa = NFA::new(r"(a)(?P<foo>b)(c)(d)(?P<bar>e)")?; |
1754 | | /// // The first is the implicit group that is always unnammed. The next |
1755 | | /// // 5 groups are the explicit groups found in the concrete syntax above. |
1756 | | /// let expected = vec![None, None, Some("foo"), None, None, Some("bar")]; |
1757 | | /// let got: Vec<Option<&str>> = |
1758 | | /// nfa.group_info().pattern_names(PatternID::ZERO).collect(); |
1759 | | /// assert_eq!(expected, got); |
1760 | | /// |
1761 | | /// // Using an invalid pattern ID will result in nothing yielded. |
1762 | | /// let got = nfa.group_info().pattern_names(PatternID::must(999)).count(); |
1763 | | /// assert_eq!(0, got); |
1764 | | /// |
1765 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1766 | | /// ``` |
1767 | | #[inline] |
1768 | 0 | pub fn pattern_names(&self, pid: PatternID) -> GroupInfoPatternNames<'_> { |
1769 | 0 | GroupInfoPatternNames { |
1770 | 0 | it: self |
1771 | 0 | .0 |
1772 | 0 | .index_to_name |
1773 | 0 | .get(pid.as_usize()) |
1774 | 0 | .map(|indices| indices.iter()) |
1775 | 0 | .unwrap_or([].iter()), |
1776 | 0 | } |
1777 | 0 | } |
1778 | | |
1779 | | /// Return an iterator of all capture groups for all patterns supported by |
1780 | | /// this `GroupInfo`. Each item yielded is a triple of the group's pattern |
1781 | | /// ID, index in the pattern and the group's name, if present. |
1782 | | /// |
1783 | | /// # Example |
1784 | | /// |
1785 | | /// This example shows how to get a list of all capture groups found in |
1786 | | /// one NFA, potentially spanning multiple patterns. |
1787 | | /// |
1788 | | /// ``` |
1789 | | /// use regex_automata::{nfa::thompson::NFA, PatternID}; |
1790 | | /// |
1791 | | /// let nfa = NFA::new_many(&[ |
1792 | | /// r"(?P<foo>a)", |
1793 | | /// r"a", |
1794 | | /// r"(a)", |
1795 | | /// ])?; |
1796 | | /// let expected = vec![ |
1797 | | /// (PatternID::must(0), 0, None), |
1798 | | /// (PatternID::must(0), 1, Some("foo")), |
1799 | | /// (PatternID::must(1), 0, None), |
1800 | | /// (PatternID::must(2), 0, None), |
1801 | | /// (PatternID::must(2), 1, None), |
1802 | | /// ]; |
1803 | | /// let got: Vec<(PatternID, usize, Option<&str>)> = |
1804 | | /// nfa.group_info().all_names().collect(); |
1805 | | /// assert_eq!(expected, got); |
1806 | | /// |
1807 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1808 | | /// ``` |
1809 | | /// |
1810 | | /// Unlike other capturing group related routines, this routine doesn't |
1811 | | /// panic even if captures aren't enabled on this NFA: |
1812 | | /// |
1813 | | /// ``` |
1814 | | /// use regex_automata::nfa::thompson::{NFA, WhichCaptures}; |
1815 | | /// |
1816 | | /// let nfa = NFA::compiler() |
1817 | | /// .configure(NFA::config().which_captures(WhichCaptures::None)) |
1818 | | /// .build_many(&[ |
1819 | | /// r"(?P<foo>a)", |
1820 | | /// r"a", |
1821 | | /// r"(a)", |
1822 | | /// ])?; |
1823 | | /// // When captures aren't enabled, there's nothing to return. |
1824 | | /// assert_eq!(0, nfa.group_info().all_names().count()); |
1825 | | /// |
1826 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1827 | | /// ``` |
1828 | | #[inline] |
1829 | 0 | pub fn all_names(&self) -> GroupInfoAllNames<'_> { |
1830 | 0 | GroupInfoAllNames { |
1831 | 0 | group_info: self, |
1832 | 0 | pids: PatternID::iter(self.pattern_len()), |
1833 | 0 | current_pid: None, |
1834 | 0 | names: None, |
1835 | 0 | } |
1836 | 0 | } |
1837 | | |
1838 | | /// Returns the starting and ending slot corresponding to the given |
1839 | | /// capturing group for the given pattern. The ending slot is always one |
1840 | | /// more than the starting slot returned. |
1841 | | /// |
1842 | | /// Note that this is like [`GroupInfo::slot`], except that it also returns |
1843 | | /// the ending slot value for convenience. |
1844 | | /// |
1845 | | /// If either the pattern ID or the capture index is invalid, then this |
1846 | | /// returns None. |
1847 | | /// |
1848 | | /// # Example |
1849 | | /// |
1850 | | /// This example shows that the starting slots for the first capturing |
1851 | | /// group of each pattern are distinct. |
1852 | | /// |
1853 | | /// ``` |
1854 | | /// use regex_automata::{nfa::thompson::NFA, PatternID}; |
1855 | | /// |
1856 | | /// let nfa = NFA::new_many(&["a", "b"])?; |
1857 | | /// assert_ne!( |
1858 | | /// nfa.group_info().slots(PatternID::must(0), 0), |
1859 | | /// nfa.group_info().slots(PatternID::must(1), 0), |
1860 | | /// ); |
1861 | | /// |
1862 | | /// // Also, the start and end slot values are never equivalent. |
1863 | | /// let (start, end) = nfa.group_info().slots(PatternID::ZERO, 0).unwrap(); |
1864 | | /// assert_ne!(start, end); |
1865 | | /// |
1866 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1867 | | /// ``` |
1868 | | #[inline] |
1869 | 0 | pub fn slots( |
1870 | 0 | &self, |
1871 | 0 | pid: PatternID, |
1872 | 0 | group_index: usize, |
1873 | 0 | ) -> Option<(usize, usize)> { |
1874 | 0 | // Since 'slot' only even returns valid starting slots, we know that |
1875 | 0 | // there must also be an end slot and that end slot is always one more |
1876 | 0 | // than the start slot. |
1877 | 0 | self.slot(pid, group_index).map(|start| (start, start + 1)) |
1878 | 0 | } |
1879 | | |
1880 | | /// Returns the starting slot corresponding to the given capturing group |
1881 | | /// for the given pattern. The ending slot is always one more than the |
1882 | | /// value returned. |
1883 | | /// |
1884 | | /// If either the pattern ID or the capture index is invalid, then this |
1885 | | /// returns None. |
1886 | | /// |
1887 | | /// # Example |
1888 | | /// |
1889 | | /// This example shows that the starting slots for the first capturing |
1890 | | /// group of each pattern are distinct. |
1891 | | /// |
1892 | | /// ``` |
1893 | | /// use regex_automata::{nfa::thompson::NFA, PatternID}; |
1894 | | /// |
1895 | | /// let nfa = NFA::new_many(&["a", "b"])?; |
1896 | | /// assert_ne!( |
1897 | | /// nfa.group_info().slot(PatternID::must(0), 0), |
1898 | | /// nfa.group_info().slot(PatternID::must(1), 0), |
1899 | | /// ); |
1900 | | /// |
1901 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1902 | | /// ``` |
1903 | | #[inline] |
1904 | 6 | pub fn slot(&self, pid: PatternID, group_index: usize) -> Option<usize> { |
1905 | 6 | if group_index >= self.group_len(pid) { |
1906 | 0 | return None; |
1907 | 6 | } |
1908 | 6 | // At this point, we know that 'pid' refers to a real pattern and that |
1909 | 6 | // 'group_index' refers to a real group. We therefore also know that |
1910 | 6 | // the pattern and group can be combined to return a correct slot. |
1911 | 6 | // That's why we don't need to use checked arithmetic below. |
1912 | 6 | if group_index == 0 { |
1913 | 4 | Some(pid.as_usize() * 2) |
1914 | | } else { |
1915 | | // As above, we don't need to check that our slot is less than the |
1916 | | // end of our range since we already know the group index is a |
1917 | | // valid index for the given pattern. |
1918 | 2 | let (start, _) = self.0.slot_ranges[pid]; |
1919 | 2 | Some(start.as_usize() + ((group_index - 1) * 2)) |
1920 | | } |
1921 | 6 | } |
1922 | | |
1923 | | /// Returns the total number of patterns in this `GroupInfo`. |
1924 | | /// |
1925 | | /// This may return zero if the `GroupInfo` was constructed with no |
1926 | | /// patterns. |
1927 | | /// |
1928 | | /// This is guaranteed to be no bigger than [`PatternID::LIMIT`] because |
1929 | | /// `GroupInfo` construction will fail if too many patterns are added. |
1930 | | /// |
1931 | | /// # Example |
1932 | | /// |
1933 | | /// ``` |
1934 | | /// use regex_automata::nfa::thompson::NFA; |
1935 | | /// |
1936 | | /// let nfa = NFA::new_many(&["[0-9]+", "[a-z]+", "[A-Z]+"])?; |
1937 | | /// assert_eq!(3, nfa.group_info().pattern_len()); |
1938 | | /// |
1939 | | /// let nfa = NFA::never_match(); |
1940 | | /// assert_eq!(0, nfa.group_info().pattern_len()); |
1941 | | /// |
1942 | | /// let nfa = NFA::always_match(); |
1943 | | /// assert_eq!(1, nfa.group_info().pattern_len()); |
1944 | | /// |
1945 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1946 | | /// ``` |
1947 | | #[inline] |
1948 | 2 | pub fn pattern_len(&self) -> usize { |
1949 | 2 | self.0.pattern_len() |
1950 | 2 | } |
1951 | | |
1952 | | /// Return the number of capture groups in a pattern. |
1953 | | /// |
1954 | | /// If the pattern ID is invalid, then this returns `0`. |
1955 | | /// |
1956 | | /// # Example |
1957 | | /// |
1958 | | /// This example shows how the values returned by this routine may vary |
1959 | | /// for different patterns and NFA configurations. |
1960 | | /// |
1961 | | /// ``` |
1962 | | /// use regex_automata::{nfa::thompson::{NFA, WhichCaptures}, PatternID}; |
1963 | | /// |
1964 | | /// let nfa = NFA::new(r"(a)(b)(c)")?; |
1965 | | /// // There are 3 explicit groups in the pattern's concrete syntax and |
1966 | | /// // 1 unnamed and implicit group spanning the entire pattern. |
1967 | | /// assert_eq!(4, nfa.group_info().group_len(PatternID::ZERO)); |
1968 | | /// |
1969 | | /// let nfa = NFA::new(r"abc")?; |
1970 | | /// // There is just the unnamed implicit group. |
1971 | | /// assert_eq!(1, nfa.group_info().group_len(PatternID::ZERO)); |
1972 | | /// |
1973 | | /// let nfa = NFA::compiler() |
1974 | | /// .configure(NFA::config().which_captures(WhichCaptures::None)) |
1975 | | /// .build(r"abc")?; |
1976 | | /// // We disabled capturing groups, so there are none. |
1977 | | /// assert_eq!(0, nfa.group_info().group_len(PatternID::ZERO)); |
1978 | | /// |
1979 | | /// let nfa = NFA::compiler() |
1980 | | /// .configure(NFA::config().which_captures(WhichCaptures::None)) |
1981 | | /// .build(r"(a)(b)(c)")?; |
1982 | | /// // We disabled capturing groups, so there are none, even if there are |
1983 | | /// // explicit groups in the concrete syntax. |
1984 | | /// assert_eq!(0, nfa.group_info().group_len(PatternID::ZERO)); |
1985 | | /// |
1986 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1987 | | /// ``` |
1988 | | #[inline] |
1989 | 6 | pub fn group_len(&self, pid: PatternID) -> usize { |
1990 | 6 | self.0.group_len(pid) |
1991 | 6 | } |
1992 | | |
1993 | | /// Return the total number of capture groups across all patterns. |
1994 | | /// |
1995 | | /// This includes implicit groups that represent the entire match of a |
1996 | | /// pattern. |
1997 | | /// |
1998 | | /// # Example |
1999 | | /// |
2000 | | /// This example shows how the values returned by this routine may vary |
2001 | | /// for different patterns and NFA configurations. |
2002 | | /// |
2003 | | /// ``` |
2004 | | /// use regex_automata::{nfa::thompson::{NFA, WhichCaptures}, PatternID}; |
2005 | | /// |
2006 | | /// let nfa = NFA::new(r"(a)(b)(c)")?; |
2007 | | /// // There are 3 explicit groups in the pattern's concrete syntax and |
2008 | | /// // 1 unnamed and implicit group spanning the entire pattern. |
2009 | | /// assert_eq!(4, nfa.group_info().all_group_len()); |
2010 | | /// |
2011 | | /// let nfa = NFA::new(r"abc")?; |
2012 | | /// // There is just the unnamed implicit group. |
2013 | | /// assert_eq!(1, nfa.group_info().all_group_len()); |
2014 | | /// |
2015 | | /// let nfa = NFA::new_many(&["(a)", "b", "(c)"])?; |
2016 | | /// // Each pattern has one implicit groups, and two |
2017 | | /// // patterns have one explicit group each. |
2018 | | /// assert_eq!(5, nfa.group_info().all_group_len()); |
2019 | | /// |
2020 | | /// let nfa = NFA::compiler() |
2021 | | /// .configure(NFA::config().which_captures(WhichCaptures::None)) |
2022 | | /// .build(r"abc")?; |
2023 | | /// // We disabled capturing groups, so there are none. |
2024 | | /// assert_eq!(0, nfa.group_info().all_group_len()); |
2025 | | /// |
2026 | | /// let nfa = NFA::compiler() |
2027 | | /// .configure(NFA::config().which_captures(WhichCaptures::None)) |
2028 | | /// .build(r"(a)(b)(c)")?; |
2029 | | /// // We disabled capturing groups, so there are none, even if there are |
2030 | | /// // explicit groups in the concrete syntax. |
2031 | | /// assert_eq!(0, nfa.group_info().group_len(PatternID::ZERO)); |
2032 | | /// |
2033 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2034 | | /// ``` |
2035 | | #[inline] |
2036 | 0 | pub fn all_group_len(&self) -> usize { |
2037 | 0 | self.slot_len() / 2 |
2038 | 0 | } |
2039 | | |
2040 | | /// Returns the total number of slots in this `GroupInfo` across all |
2041 | | /// patterns. |
2042 | | /// |
2043 | | /// The total number of slots is always twice the total number of capturing |
2044 | | /// groups, including both implicit and explicit groups. |
2045 | | /// |
2046 | | /// # Example |
2047 | | /// |
2048 | | /// This example shows the relationship between the number of capturing |
2049 | | /// groups and slots. |
2050 | | /// |
2051 | | /// ``` |
2052 | | /// use regex_automata::util::captures::GroupInfo; |
2053 | | /// |
2054 | | /// // There are 11 total groups here. |
2055 | | /// let info = GroupInfo::new(vec![ |
2056 | | /// vec![None, Some("foo")], |
2057 | | /// vec![None], |
2058 | | /// vec![None, None, None, Some("bar"), None], |
2059 | | /// vec![None, None, Some("foo")], |
2060 | | /// ])?; |
2061 | | /// // 2 slots per group gives us 11*2=22 slots. |
2062 | | /// assert_eq!(22, info.slot_len()); |
2063 | | /// |
2064 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2065 | | /// ``` |
2066 | | #[inline] |
2067 | 8 | pub fn slot_len(&self) -> usize { |
2068 | 8 | self.0.small_slot_len().as_usize() |
2069 | 8 | } |
2070 | | |
2071 | | /// Returns the total number of slots for implicit capturing groups. |
2072 | | /// |
2073 | | /// This is like [`GroupInfo::slot_len`], except it doesn't include the |
2074 | | /// explicit slots for each pattern. Since there are always exactly 2 |
2075 | | /// implicit slots for each pattern, the number of implicit slots is always |
2076 | | /// equal to twice the number of patterns. |
2077 | | /// |
2078 | | /// # Example |
2079 | | /// |
2080 | | /// This example shows the relationship between the number of capturing |
2081 | | /// groups, implicit slots and explicit slots. |
2082 | | /// |
2083 | | /// ``` |
2084 | | /// use regex_automata::util::captures::GroupInfo; |
2085 | | /// |
2086 | | /// // There are 11 total groups here. |
2087 | | /// let info = GroupInfo::new(vec![vec![None, Some("foo"), Some("bar")]])?; |
2088 | | /// // 2 slots per group gives us 11*2=22 slots. |
2089 | | /// assert_eq!(6, info.slot_len()); |
2090 | | /// // 2 implicit slots per pattern gives us 2 implicit slots since there |
2091 | | /// // is 1 pattern. |
2092 | | /// assert_eq!(2, info.implicit_slot_len()); |
2093 | | /// // 2 explicit capturing groups gives us 2*2=4 explicit slots. |
2094 | | /// assert_eq!(4, info.explicit_slot_len()); |
2095 | | /// |
2096 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2097 | | /// ``` |
2098 | | #[inline] |
2099 | 2 | pub fn implicit_slot_len(&self) -> usize { |
2100 | 2 | self.pattern_len() * 2 |
2101 | 2 | } |
2102 | | |
2103 | | /// Returns the total number of slots for explicit capturing groups. |
2104 | | /// |
2105 | | /// This is like [`GroupInfo::slot_len`], except it doesn't include the |
2106 | | /// implicit slots for each pattern. (There are always 2 implicit slots for |
2107 | | /// each pattern.) |
2108 | | /// |
2109 | | /// For a non-empty `GroupInfo`, it is always the case that `slot_len` is |
2110 | | /// strictly greater than `explicit_slot_len`. For an empty `GroupInfo`, |
2111 | | /// both the total number of slots and the number of explicit slots is |
2112 | | /// `0`. |
2113 | | /// |
2114 | | /// # Example |
2115 | | /// |
2116 | | /// This example shows the relationship between the number of capturing |
2117 | | /// groups, implicit slots and explicit slots. |
2118 | | /// |
2119 | | /// ``` |
2120 | | /// use regex_automata::util::captures::GroupInfo; |
2121 | | /// |
2122 | | /// // There are 11 total groups here. |
2123 | | /// let info = GroupInfo::new(vec![vec![None, Some("foo"), Some("bar")]])?; |
2124 | | /// // 2 slots per group gives us 11*2=22 slots. |
2125 | | /// assert_eq!(6, info.slot_len()); |
2126 | | /// // 2 implicit slots per pattern gives us 2 implicit slots since there |
2127 | | /// // is 1 pattern. |
2128 | | /// assert_eq!(2, info.implicit_slot_len()); |
2129 | | /// // 2 explicit capturing groups gives us 2*2=4 explicit slots. |
2130 | | /// assert_eq!(4, info.explicit_slot_len()); |
2131 | | /// |
2132 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2133 | | /// ``` |
2134 | | #[inline] |
2135 | 2 | pub fn explicit_slot_len(&self) -> usize { |
2136 | 2 | self.slot_len().saturating_sub(self.implicit_slot_len()) |
2137 | 2 | } |
2138 | | |
2139 | | /// Returns the memory usage, in bytes, of this `GroupInfo`. |
2140 | | /// |
2141 | | /// This does **not** include the stack size used up by this `GroupInfo`. |
2142 | | /// To compute that, use `std::mem::size_of::<GroupInfo>()`. |
2143 | | #[inline] |
2144 | 0 | pub fn memory_usage(&self) -> usize { |
2145 | | use core::mem::size_of as s; |
2146 | | |
2147 | 0 | s::<GroupInfoInner>() |
2148 | 0 | + self.0.slot_ranges.len() * s::<(SmallIndex, SmallIndex)>() |
2149 | 0 | + self.0.name_to_index.len() * s::<CaptureNameMap>() |
2150 | 0 | + self.0.index_to_name.len() * s::<Vec<Option<Arc<str>>>>() |
2151 | 0 | + self.0.memory_extra |
2152 | 0 | } |
2153 | | } |
2154 | | |
2155 | | /// A map from capture group name to its corresponding capture group index. |
2156 | | /// |
2157 | | /// This type is actually wrapped inside a Vec indexed by pattern ID on a |
2158 | | /// `GroupInfo`, since multiple patterns may have the same capture group name. |
2159 | | /// That is, each pattern gets its own namespace of capture group names. |
2160 | | /// |
2161 | | /// Perhaps a more memory efficient representation would be |
2162 | | /// HashMap<(PatternID, Arc<str>), usize>, but this makes it difficult to look |
2163 | | /// up a capture index by name without producing a `Arc<str>`, which requires |
2164 | | /// an allocation. To fix this, I think we'd need to define our own unsized |
2165 | | /// type or something? Anyway, I didn't give this much thought since it |
2166 | | /// probably doesn't matter much in the grand scheme of things. But it did |
2167 | | /// stand out to me as mildly wasteful. |
2168 | | #[cfg(feature = "std")] |
2169 | | type CaptureNameMap = std::collections::HashMap<Arc<str>, SmallIndex>; |
2170 | | #[cfg(not(feature = "std"))] |
2171 | | type CaptureNameMap = alloc::collections::BTreeMap<Arc<str>, SmallIndex>; |
2172 | | |
2173 | | /// The inner guts of `GroupInfo`. This type only exists so that it can |
2174 | | /// be wrapped in an `Arc` to make `GroupInfo` reference counted. |
2175 | | #[derive(Debug, Default)] |
2176 | | struct GroupInfoInner { |
2177 | | slot_ranges: Vec<(SmallIndex, SmallIndex)>, |
2178 | | name_to_index: Vec<CaptureNameMap>, |
2179 | | index_to_name: Vec<Vec<Option<Arc<str>>>>, |
2180 | | memory_extra: usize, |
2181 | | } |
2182 | | |
2183 | | impl GroupInfoInner { |
2184 | | /// This adds the first unnamed group for the given pattern ID. The given |
2185 | | /// pattern ID must be zero if this is the first time this method is |
2186 | | /// called, or must be exactly one more than the pattern ID supplied to the |
2187 | | /// previous call to this method. (This method panics if this rule is |
2188 | | /// violated.) |
2189 | | /// |
2190 | | /// This can be thought of as initializing the GroupInfo state for the |
2191 | | /// given pattern and closing off the state for any previous pattern. |
2192 | 2 | fn add_first_group(&mut self, pid: PatternID) { |
2193 | 2 | assert_eq!(pid.as_usize(), self.slot_ranges.len()); |
2194 | 2 | assert_eq!(pid.as_usize(), self.name_to_index.len()); |
2195 | 2 | assert_eq!(pid.as_usize(), self.index_to_name.len()); |
2196 | | // This is the start of our slots for the explicit capturing groups. |
2197 | | // Note that since the slots for the 0th group for every pattern appear |
2198 | | // before any slots for the nth group (where n > 0) in any pattern, we |
2199 | | // will have to fix up the slot ranges once we know how many patterns |
2200 | | // we've added capture groups for. |
2201 | 2 | let slot_start = self.small_slot_len(); |
2202 | 2 | self.slot_ranges.push((slot_start, slot_start)); |
2203 | 2 | self.name_to_index.push(CaptureNameMap::new()); |
2204 | 2 | self.index_to_name.push(vec![None]); |
2205 | 2 | self.memory_extra += core::mem::size_of::<Option<Arc<str>>>(); |
2206 | 2 | } |
2207 | | |
2208 | | /// Add an explicit capturing group for the given pattern with the given |
2209 | | /// index. If the group has a name, then that must be given as well. |
2210 | | /// |
2211 | | /// Note that every capturing group except for the first or zeroth group is |
2212 | | /// explicit. |
2213 | | /// |
2214 | | /// This returns an error if adding this group would result in overflowing |
2215 | | /// slot indices or if a capturing group with the same name for this |
2216 | | /// pattern has already been added. |
2217 | 1 | fn add_explicit_group<N: AsRef<str>>( |
2218 | 1 | &mut self, |
2219 | 1 | pid: PatternID, |
2220 | 1 | group: SmallIndex, |
2221 | 1 | maybe_name: Option<N>, |
2222 | 1 | ) -> Result<(), GroupInfoError> { |
2223 | 1 | // We also need to check that the slot index generated for |
2224 | 1 | // this group is also valid. Although, this is a little weird |
2225 | 1 | // because we offset these indices below, at which point, we'll |
2226 | 1 | // have to recheck them. Gosh this is annoying. Note that |
2227 | 1 | // the '+2' below is OK because 'end' is guaranteed to be less |
2228 | 1 | // than isize::MAX. |
2229 | 1 | let end = &mut self.slot_ranges[pid].1; |
2230 | 1 | *end = SmallIndex::new(end.as_usize() + 2).map_err(|_| { |
2231 | 0 | GroupInfoError::too_many_groups(pid, group.as_usize()) |
2232 | 1 | })?0 ; |
2233 | 1 | if let Some(name0 ) = maybe_name { |
2234 | 0 | let name = Arc::<str>::from(name.as_ref()); |
2235 | 0 | if self.name_to_index[pid].contains_key(&*name) { |
2236 | 0 | return Err(GroupInfoError::duplicate(pid, &name)); |
2237 | 0 | } |
2238 | 0 | let len = name.len(); |
2239 | 0 | self.name_to_index[pid].insert(Arc::clone(&name), group); |
2240 | 0 | self.index_to_name[pid].push(Some(name)); |
2241 | 0 | // Adds the memory used by the Arc<str> in both maps. |
2242 | 0 | self.memory_extra += |
2243 | 0 | 2 * (len + core::mem::size_of::<Option<Arc<str>>>()); |
2244 | 0 | // And also the value entry for the 'name_to_index' map. |
2245 | 0 | // This is probably an underestimate for 'name_to_index' since |
2246 | 0 | // hashmaps/btrees likely have some non-zero overhead, but we |
2247 | 0 | // assume here that they have zero overhead. |
2248 | 0 | self.memory_extra += core::mem::size_of::<SmallIndex>(); |
2249 | 1 | } else { |
2250 | 1 | self.index_to_name[pid].push(None); |
2251 | 1 | self.memory_extra += core::mem::size_of::<Option<Arc<str>>>(); |
2252 | 1 | } |
2253 | | // This is a sanity assert that checks that our group index |
2254 | | // is in line with the number of groups added so far for this |
2255 | | // pattern. |
2256 | 1 | assert_eq!(group.one_more(), self.group_len(pid)); |
2257 | | // And is also in line with the 'index_to_name' map. |
2258 | 1 | assert_eq!(group.one_more(), self.index_to_name[pid].len()); |
2259 | 1 | Ok(()) |
2260 | 1 | } |
2261 | | |
2262 | | /// This corrects the slot ranges to account for the slots corresponding |
2263 | | /// to the zeroth group of each pattern. That is, every slot range is |
2264 | | /// offset by 'pattern_len() * 2', since each pattern uses two slots to |
2265 | | /// represent the zeroth group. |
2266 | 4 | fn fixup_slot_ranges(&mut self) -> Result<(), GroupInfoError> { |
2267 | | use crate::util::primitives::IteratorIndexExt; |
2268 | | // Since we know number of patterns fits in PatternID and |
2269 | | // PatternID::MAX < isize::MAX, it follows that multiplying by 2 will |
2270 | | // never overflow usize. |
2271 | 4 | let offset = self.pattern_len().checked_mul(2).unwrap(); |
2272 | 2 | for (pid, &mut (ref mut start, ref mut end)) in |
2273 | 4 | self.slot_ranges.iter_mut().with_pattern_ids() |
2274 | | { |
2275 | 2 | let group_len = 1 + ((end.as_usize() - start.as_usize()) / 2); |
2276 | 2 | let new_end = match end.as_usize().checked_add(offset) { |
2277 | 2 | Some(new_end) => new_end, |
2278 | | None => { |
2279 | 0 | return Err(GroupInfoError::too_many_groups( |
2280 | 0 | pid, group_len, |
2281 | 0 | )) |
2282 | | } |
2283 | | }; |
2284 | 2 | *end = SmallIndex::new(new_end).map_err(|_| { |
2285 | 0 | GroupInfoError::too_many_groups(pid, group_len) |
2286 | 2 | })?0 ; |
2287 | | // Since start <= end, if end is valid then start must be too. |
2288 | 2 | *start = SmallIndex::new(start.as_usize() + offset).unwrap(); |
2289 | | } |
2290 | 4 | Ok(()) |
2291 | 4 | } |
2292 | | |
2293 | | /// Return the total number of patterns represented by this capture slot |
2294 | | /// info. |
2295 | 6 | fn pattern_len(&self) -> usize { |
2296 | 6 | self.slot_ranges.len() |
2297 | 6 | } |
2298 | | |
2299 | | /// Return the total number of capturing groups for the given pattern. If |
2300 | | /// the given pattern isn't valid for this capture slot info, then 0 is |
2301 | | /// returned. |
2302 | 7 | fn group_len(&self, pid: PatternID) -> usize { |
2303 | 7 | let (start, end) = match self.slot_ranges.get(pid.as_usize()) { |
2304 | 0 | None => return 0, |
2305 | 7 | Some(range) => range, |
2306 | 7 | }; |
2307 | 7 | // The difference between any two SmallIndex values always fits in a |
2308 | 7 | // usize since we know that SmallIndex::MAX <= isize::MAX-1. We also |
2309 | 7 | // know that start<=end by construction and that the number of groups |
2310 | 7 | // never exceeds SmallIndex and thus never overflows usize. |
2311 | 7 | 1 + ((end.as_usize() - start.as_usize()) / 2) |
2312 | 7 | } |
2313 | | |
2314 | | /// Return the total number of slots in this capture slot info as a |
2315 | | /// "small index." |
2316 | 10 | fn small_slot_len(&self) -> SmallIndex { |
2317 | 10 | // Since slots are allocated in order of pattern (starting at 0) and |
2318 | 10 | // then in order of capture group, it follows that the number of slots |
2319 | 10 | // is the end of the range of slots for the last pattern. This is |
2320 | 10 | // true even when the last pattern has no capturing groups, since |
2321 | 10 | // 'slot_ranges' will still represent it explicitly with an empty |
2322 | 10 | // range. |
2323 | 10 | self.slot_ranges.last().map_or(SmallIndex::ZERO, |&(_, end)| end8 ) |
2324 | 10 | } |
2325 | | } |
2326 | | |
2327 | | /// An error that may occur when building a `GroupInfo`. |
2328 | | /// |
2329 | | /// Building a `GroupInfo` does a variety of checks to make sure the |
2330 | | /// capturing groups satisfy a number of invariants. This includes, but is not |
2331 | | /// limited to, ensuring that the first capturing group is unnamed and that |
2332 | | /// there are no duplicate capture groups for a specific pattern. |
2333 | | #[derive(Clone, Debug)] |
2334 | | pub struct GroupInfoError { |
2335 | | kind: GroupInfoErrorKind, |
2336 | | } |
2337 | | |
2338 | | /// The kind of error that occurs when building a `GroupInfo` fails. |
2339 | | /// |
2340 | | /// We keep this un-exported because it's not clear how useful it is to |
2341 | | /// export it. |
2342 | | #[derive(Clone, Debug)] |
2343 | | enum GroupInfoErrorKind { |
2344 | | /// This occurs when too many patterns have been added. i.e., It would |
2345 | | /// otherwise overflow a `PatternID`. |
2346 | | TooManyPatterns { err: PatternIDError }, |
2347 | | /// This occurs when too many capturing groups have been added for a |
2348 | | /// particular pattern. |
2349 | | TooManyGroups { |
2350 | | /// The ID of the pattern that had too many groups. |
2351 | | pattern: PatternID, |
2352 | | /// The minimum number of groups that the caller has tried to add for |
2353 | | /// a pattern. |
2354 | | minimum: usize, |
2355 | | }, |
2356 | | /// An error that occurs when a pattern has no capture groups. Either the |
2357 | | /// group info must be empty, or all patterns must have at least one group |
2358 | | /// (corresponding to the unnamed group for the entire pattern). |
2359 | | MissingGroups { |
2360 | | /// The ID of the pattern that had no capturing groups. |
2361 | | pattern: PatternID, |
2362 | | }, |
2363 | | /// An error that occurs when one tries to provide a name for the capture |
2364 | | /// group at index 0. This capturing group must currently always be |
2365 | | /// unnamed. |
2366 | | FirstMustBeUnnamed { |
2367 | | /// The ID of the pattern that was found to have a named first |
2368 | | /// capturing group. |
2369 | | pattern: PatternID, |
2370 | | }, |
2371 | | /// An error that occurs when duplicate capture group names for the same |
2372 | | /// pattern are added. |
2373 | | /// |
2374 | | /// NOTE: At time of writing, this error can never occur if you're using |
2375 | | /// regex-syntax, since the parser itself will reject patterns with |
2376 | | /// duplicate capture group names. This error can only occur when the |
2377 | | /// builder is used to hand construct NFAs. |
2378 | | Duplicate { |
2379 | | /// The pattern in which the duplicate capture group name was found. |
2380 | | pattern: PatternID, |
2381 | | /// The duplicate name. |
2382 | | name: String, |
2383 | | }, |
2384 | | } |
2385 | | |
2386 | | impl GroupInfoError { |
2387 | 0 | fn too_many_patterns(err: PatternIDError) -> GroupInfoError { |
2388 | 0 | GroupInfoError { kind: GroupInfoErrorKind::TooManyPatterns { err } } |
2389 | 0 | } |
2390 | | |
2391 | 0 | fn too_many_groups(pattern: PatternID, minimum: usize) -> GroupInfoError { |
2392 | 0 | GroupInfoError { |
2393 | 0 | kind: GroupInfoErrorKind::TooManyGroups { pattern, minimum }, |
2394 | 0 | } |
2395 | 0 | } |
2396 | | |
2397 | 0 | fn missing_groups(pattern: PatternID) -> GroupInfoError { |
2398 | 0 | GroupInfoError { kind: GroupInfoErrorKind::MissingGroups { pattern } } |
2399 | 0 | } |
2400 | | |
2401 | 0 | fn first_must_be_unnamed(pattern: PatternID) -> GroupInfoError { |
2402 | 0 | GroupInfoError { |
2403 | 0 | kind: GroupInfoErrorKind::FirstMustBeUnnamed { pattern }, |
2404 | 0 | } |
2405 | 0 | } |
2406 | | |
2407 | 0 | fn duplicate(pattern: PatternID, name: &str) -> GroupInfoError { |
2408 | 0 | GroupInfoError { |
2409 | 0 | kind: GroupInfoErrorKind::Duplicate { |
2410 | 0 | pattern, |
2411 | 0 | name: String::from(name), |
2412 | 0 | }, |
2413 | 0 | } |
2414 | 0 | } |
2415 | | } |
2416 | | |
2417 | | #[cfg(feature = "std")] |
2418 | | impl std::error::Error for GroupInfoError { |
2419 | 0 | fn source(&self) -> Option<&(dyn std::error::Error + 'static)> { |
2420 | 0 | match self.kind { |
2421 | | GroupInfoErrorKind::TooManyPatterns { .. } |
2422 | | | GroupInfoErrorKind::TooManyGroups { .. } |
2423 | | | GroupInfoErrorKind::MissingGroups { .. } |
2424 | | | GroupInfoErrorKind::FirstMustBeUnnamed { .. } |
2425 | 0 | | GroupInfoErrorKind::Duplicate { .. } => None, |
2426 | 0 | } |
2427 | 0 | } |
2428 | | } |
2429 | | |
2430 | | impl core::fmt::Display for GroupInfoError { |
2431 | 0 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
2432 | | use self::GroupInfoErrorKind::*; |
2433 | | |
2434 | 0 | match self.kind { |
2435 | 0 | TooManyPatterns { ref err } => { |
2436 | 0 | write!(f, "too many patterns to build capture info: {}", err) |
2437 | | } |
2438 | 0 | TooManyGroups { pattern, minimum } => { |
2439 | 0 | write!( |
2440 | 0 | f, |
2441 | 0 | "too many capture groups (at least {}) were \ |
2442 | 0 | found for pattern {}", |
2443 | 0 | minimum, |
2444 | 0 | pattern.as_usize() |
2445 | 0 | ) |
2446 | | } |
2447 | 0 | MissingGroups { pattern } => write!( |
2448 | 0 | f, |
2449 | 0 | "no capturing groups found for pattern {} \ |
2450 | 0 | (either all patterns have zero groups or all patterns have \ |
2451 | 0 | at least one group)", |
2452 | 0 | pattern.as_usize(), |
2453 | 0 | ), |
2454 | 0 | FirstMustBeUnnamed { pattern } => write!( |
2455 | 0 | f, |
2456 | 0 | "first capture group (at index 0) for pattern {} has a name \ |
2457 | 0 | (it must be unnamed)", |
2458 | 0 | pattern.as_usize(), |
2459 | 0 | ), |
2460 | 0 | Duplicate { pattern, ref name } => write!( |
2461 | 0 | f, |
2462 | 0 | "duplicate capture group name '{}' found for pattern {}", |
2463 | 0 | name, |
2464 | 0 | pattern.as_usize(), |
2465 | 0 | ), |
2466 | | } |
2467 | 0 | } |
2468 | | } |
2469 | | |
2470 | | /// An iterator over capturing groups and their names for a specific pattern. |
2471 | | /// |
2472 | | /// This iterator is created by [`GroupInfo::pattern_names`]. |
2473 | | /// |
2474 | | /// The lifetime parameter `'a` refers to the lifetime of the `GroupInfo` |
2475 | | /// from which this iterator was created. |
2476 | | #[derive(Clone, Debug)] |
2477 | | pub struct GroupInfoPatternNames<'a> { |
2478 | | it: core::slice::Iter<'a, Option<Arc<str>>>, |
2479 | | } |
2480 | | |
2481 | | impl GroupInfoPatternNames<'static> { |
2482 | 0 | fn empty() -> GroupInfoPatternNames<'static> { |
2483 | 0 | GroupInfoPatternNames { it: [].iter() } |
2484 | 0 | } |
2485 | | } |
2486 | | |
2487 | | impl<'a> Iterator for GroupInfoPatternNames<'a> { |
2488 | | type Item = Option<&'a str>; |
2489 | | |
2490 | 0 | fn next(&mut self) -> Option<Option<&'a str>> { |
2491 | 0 | self.it.next().map(|x| x.as_deref()) |
2492 | 0 | } |
2493 | | |
2494 | 0 | fn size_hint(&self) -> (usize, Option<usize>) { |
2495 | 0 | self.it.size_hint() |
2496 | 0 | } |
2497 | | |
2498 | 0 | fn count(self) -> usize { |
2499 | 0 | self.it.count() |
2500 | 0 | } |
2501 | | } |
2502 | | |
2503 | | impl<'a> ExactSizeIterator for GroupInfoPatternNames<'a> {} |
2504 | | impl<'a> core::iter::FusedIterator for GroupInfoPatternNames<'a> {} |
2505 | | |
2506 | | /// An iterator over capturing groups and their names for a `GroupInfo`. |
2507 | | /// |
2508 | | /// This iterator is created by [`GroupInfo::all_names`]. |
2509 | | /// |
2510 | | /// The lifetime parameter `'a` refers to the lifetime of the `GroupInfo` |
2511 | | /// from which this iterator was created. |
2512 | | #[derive(Debug)] |
2513 | | pub struct GroupInfoAllNames<'a> { |
2514 | | group_info: &'a GroupInfo, |
2515 | | pids: PatternIDIter, |
2516 | | current_pid: Option<PatternID>, |
2517 | | names: Option<core::iter::Enumerate<GroupInfoPatternNames<'a>>>, |
2518 | | } |
2519 | | |
2520 | | impl<'a> Iterator for GroupInfoAllNames<'a> { |
2521 | | type Item = (PatternID, usize, Option<&'a str>); |
2522 | | |
2523 | 0 | fn next(&mut self) -> Option<(PatternID, usize, Option<&'a str>)> { |
2524 | 0 | // If the group info has no captures, then we never have anything |
2525 | 0 | // to yield. We need to consider this case explicitly (at time of |
2526 | 0 | // writing) because 'pattern_capture_names' will panic if captures |
2527 | 0 | // aren't enabled. |
2528 | 0 | if self.group_info.0.index_to_name.is_empty() { |
2529 | 0 | return None; |
2530 | 0 | } |
2531 | 0 | if self.current_pid.is_none() { |
2532 | 0 | self.current_pid = Some(self.pids.next()?); |
2533 | 0 | } |
2534 | 0 | let pid = self.current_pid.unwrap(); |
2535 | 0 | if self.names.is_none() { |
2536 | 0 | self.names = Some(self.group_info.pattern_names(pid).enumerate()); |
2537 | 0 | } |
2538 | 0 | let (group_index, name) = match self.names.as_mut().unwrap().next() { |
2539 | 0 | Some((group_index, name)) => (group_index, name), |
2540 | | None => { |
2541 | 0 | self.current_pid = None; |
2542 | 0 | self.names = None; |
2543 | 0 | return self.next(); |
2544 | | } |
2545 | | }; |
2546 | 0 | Some((pid, group_index, name)) |
2547 | 0 | } |
2548 | | } |