Coverage Report

Created: 2025-06-23 13:53

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/build/cargo-vendor-dir/libm-0.2.15/src/math/pow.rs
Line
Count
Source
1
/* origin: FreeBSD /usr/src/lib/msun/src/e_pow.c */
2
/*
3
 * ====================================================
4
 * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
5
 *
6
 * Permission to use, copy, modify, and distribute this
7
 * software is freely granted, provided that this notice
8
 * is preserved.
9
 * ====================================================
10
 */
11
12
// pow(x,y) return x**y
13
//
14
//                    n
15
// Method:  Let x =  2   * (1+f)
16
//      1. Compute and return log2(x) in two pieces:
17
//              log2(x) = w1 + w2,
18
//         where w1 has 53-24 = 29 bit trailing zeros.
19
//      2. Perform y*log2(x) = n+y' by simulating multi-precision
20
//         arithmetic, where |y'|<=0.5.
21
//      3. Return x**y = 2**n*exp(y'*log2)
22
//
23
// Special cases:
24
//      1.  (anything) ** 0  is 1
25
//      2.  1 ** (anything)  is 1
26
//      3.  (anything except 1) ** NAN is NAN
27
//      4.  NAN ** (anything except 0) is NAN
28
//      5.  +-(|x| > 1) **  +INF is +INF
29
//      6.  +-(|x| > 1) **  -INF is +0
30
//      7.  +-(|x| < 1) **  +INF is +0
31
//      8.  +-(|x| < 1) **  -INF is +INF
32
//      9.  -1          ** +-INF is 1
33
//      10. +0 ** (+anything except 0, NAN)               is +0
34
//      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
35
//      12. +0 ** (-anything except 0, NAN)               is +INF, raise divbyzero
36
//      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF, raise divbyzero
37
//      14. -0 ** (+odd integer) is -0
38
//      15. -0 ** (-odd integer) is -INF, raise divbyzero
39
//      16. +INF ** (+anything except 0,NAN) is +INF
40
//      17. +INF ** (-anything except 0,NAN) is +0
41
//      18. -INF ** (+odd integer) is -INF
42
//      19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer)
43
//      20. (anything) ** 1 is (anything)
44
//      21. (anything) ** -1 is 1/(anything)
45
//      22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
46
//      23. (-anything except 0 and inf) ** (non-integer) is NAN
47
//
48
// Accuracy:
49
//      pow(x,y) returns x**y nearly rounded. In particular
50
//                      pow(integer,integer)
51
//      always returns the correct integer provided it is
52
//      representable.
53
//
54
// Constants :
55
// The hexadecimal values are the intended ones for the following
56
// constants. The decimal values may be used, provided that the
57
// compiler will convert from decimal to binary accurately enough
58
// to produce the hexadecimal values shown.
59
//
60
use super::{fabs, get_high_word, scalbn, sqrt, with_set_high_word, with_set_low_word};
61
62
const BP: [f64; 2] = [1.0, 1.5];
63
const DP_H: [f64; 2] = [0.0, 5.84962487220764160156e-01]; /* 0x3fe2b803_40000000 */
64
const DP_L: [f64; 2] = [0.0, 1.35003920212974897128e-08]; /* 0x3E4CFDEB, 0x43CFD006 */
65
const TWO53: f64 = 9007199254740992.0; /* 0x43400000_00000000 */
66
const HUGE: f64 = 1.0e300;
67
const TINY: f64 = 1.0e-300;
68
69
// poly coefs for (3/2)*(log(x)-2s-2/3*s**3:
70
const L1: f64 = 5.99999999999994648725e-01; /* 0x3fe33333_33333303 */
71
const L2: f64 = 4.28571428578550184252e-01; /* 0x3fdb6db6_db6fabff */
72
const L3: f64 = 3.33333329818377432918e-01; /* 0x3fd55555_518f264d */
73
const L4: f64 = 2.72728123808534006489e-01; /* 0x3fd17460_a91d4101 */
74
const L5: f64 = 2.30660745775561754067e-01; /* 0x3fcd864a_93c9db65 */
75
const L6: f64 = 2.06975017800338417784e-01; /* 0x3fca7e28_4a454eef */
76
const P1: f64 = 1.66666666666666019037e-01; /* 0x3fc55555_5555553e */
77
const P2: f64 = -2.77777777770155933842e-03; /* 0xbf66c16c_16bebd93 */
78
const P3: f64 = 6.61375632143793436117e-05; /* 0x3f11566a_af25de2c */
79
const P4: f64 = -1.65339022054652515390e-06; /* 0xbebbbd41_c5d26bf1 */
80
const P5: f64 = 4.13813679705723846039e-08; /* 0x3e663769_72bea4d0 */
81
const LG2: f64 = 6.93147180559945286227e-01; /* 0x3fe62e42_fefa39ef */
82
const LG2_H: f64 = 6.93147182464599609375e-01; /* 0x3fe62e43_00000000 */
83
const LG2_L: f64 = -1.90465429995776804525e-09; /* 0xbe205c61_0ca86c39 */
84
const OVT: f64 = 8.0085662595372944372e-017; /* -(1024-log2(ovfl+.5ulp)) */
85
const CP: f64 = 9.61796693925975554329e-01; /* 0x3feec709_dc3a03fd =2/(3ln2) */
86
const CP_H: f64 = 9.61796700954437255859e-01; /* 0x3feec709_e0000000 =(float)cp */
87
const CP_L: f64 = -7.02846165095275826516e-09; /* 0xbe3e2fe0_145b01f5 =tail of cp_h*/
88
const IVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547_652b82fe =1/ln2 */
89
const IVLN2_H: f64 = 1.44269502162933349609e+00; /* 0x3ff71547_60000000 =24b 1/ln2*/
90
const IVLN2_L: f64 = 1.92596299112661746887e-08; /* 0x3e54ae0b_f85ddf44 =1/ln2 tail*/
91
92
/// Returns `x` to the power of `y` (f64).
93
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
94
0
pub fn pow(x: f64, y: f64) -> f64 {
95
0
    let t1: f64;
96
0
    let t2: f64;
97
0
98
0
    let (hx, lx): (i32, u32) = ((x.to_bits() >> 32) as i32, x.to_bits() as u32);
99
0
    let (hy, ly): (i32, u32) = ((y.to_bits() >> 32) as i32, y.to_bits() as u32);
100
0
101
0
    let mut ix: i32 = hx & 0x7fffffff_i32;
102
0
    let iy: i32 = hy & 0x7fffffff_i32;
103
0
104
0
    /* x**0 = 1, even if x is NaN */
105
0
    if ((iy as u32) | ly) == 0 {
106
0
        return 1.0;
107
0
    }
108
0
109
0
    /* 1**y = 1, even if y is NaN */
110
0
    if hx == 0x3ff00000 && lx == 0 {
111
0
        return 1.0;
112
0
    }
113
0
114
0
    /* NaN if either arg is NaN */
115
0
    if ix > 0x7ff00000
116
0
        || (ix == 0x7ff00000 && lx != 0)
117
0
        || iy > 0x7ff00000
118
0
        || (iy == 0x7ff00000 && ly != 0)
119
    {
120
0
        return x + y;
121
0
    }
122
0
123
0
    /* determine if y is an odd int when x < 0
124
0
     * yisint = 0       ... y is not an integer
125
0
     * yisint = 1       ... y is an odd int
126
0
     * yisint = 2       ... y is an even int
127
0
     */
128
0
    let mut yisint: i32 = 0;
129
0
    let mut k: i32;
130
0
    let mut j: i32;
131
0
    if hx < 0 {
132
0
        if iy >= 0x43400000 {
133
0
            yisint = 2; /* even integer y */
134
0
        } else if iy >= 0x3ff00000 {
135
0
            k = (iy >> 20) - 0x3ff; /* exponent */
136
0
137
0
            if k > 20 {
138
0
                j = (ly >> (52 - k)) as i32;
139
0
140
0
                if (j << (52 - k)) == (ly as i32) {
141
0
                    yisint = 2 - (j & 1);
142
0
                }
143
0
            } else if ly == 0 {
144
0
                j = iy >> (20 - k);
145
0
146
0
                if (j << (20 - k)) == iy {
147
0
                    yisint = 2 - (j & 1);
148
0
                }
149
0
            }
150
0
        }
151
0
    }
152
153
0
    if ly == 0 {
154
        /* special value of y */
155
0
        if iy == 0x7ff00000 {
156
            /* y is +-inf */
157
158
0
            return if ((ix - 0x3ff00000) | (lx as i32)) == 0 {
159
                /* (-1)**+-inf is 1 */
160
0
                1.0
161
0
            } else if ix >= 0x3ff00000 {
162
                /* (|x|>1)**+-inf = inf,0 */
163
0
                if hy >= 0 { y } else { 0.0 }
164
            } else {
165
                /* (|x|<1)**+-inf = 0,inf */
166
0
                if hy >= 0 { 0.0 } else { -y }
167
            };
168
0
        }
169
0
170
0
        if iy == 0x3ff00000 {
171
            /* y is +-1 */
172
0
            return if hy >= 0 { x } else { 1.0 / x };
173
0
        }
174
0
175
0
        if hy == 0x40000000 {
176
            /* y is 2 */
177
0
            return x * x;
178
0
        }
179
0
180
0
        if hy == 0x3fe00000 {
181
            /* y is 0.5 */
182
0
            if hx >= 0 {
183
                /* x >= +0 */
184
0
                return sqrt(x);
185
0
            }
186
0
        }
187
0
    }
188
189
0
    let mut ax: f64 = fabs(x);
190
0
    if lx == 0 {
191
        /* special value of x */
192
0
        if ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000 {
193
            /* x is +-0,+-inf,+-1 */
194
0
            let mut z: f64 = ax;
195
0
196
0
            if hy < 0 {
197
0
                /* z = (1/|x|) */
198
0
                z = 1.0 / z;
199
0
            }
200
201
0
            if hx < 0 {
202
0
                if ((ix - 0x3ff00000) | yisint) == 0 {
203
0
                    z = (z - z) / (z - z); /* (-1)**non-int is NaN */
204
0
                } else if yisint == 1 {
205
0
                    z = -z; /* (x<0)**odd = -(|x|**odd) */
206
0
                }
207
0
            }
208
209
0
            return z;
210
0
        }
211
0
    }
212
213
0
    let mut s: f64 = 1.0; /* sign of result */
214
0
    if hx < 0 {
215
0
        if yisint == 0 {
216
            /* (x<0)**(non-int) is NaN */
217
0
            return (x - x) / (x - x);
218
0
        }
219
0
220
0
        if yisint == 1 {
221
0
            /* (x<0)**(odd int) */
222
0
            s = -1.0;
223
0
        }
224
0
    }
225
226
    /* |y| is HUGE */
227
0
    if iy > 0x41e00000 {
228
        /* if |y| > 2**31 */
229
0
        if iy > 0x43f00000 {
230
            /* if |y| > 2**64, must o/uflow */
231
0
            if ix <= 0x3fefffff {
232
0
                return if hy < 0 { HUGE * HUGE } else { TINY * TINY };
233
0
            }
234
0
235
0
            if ix >= 0x3ff00000 {
236
0
                return if hy > 0 { HUGE * HUGE } else { TINY * TINY };
237
0
            }
238
0
        }
239
240
        /* over/underflow if x is not close to one */
241
0
        if ix < 0x3fefffff {
242
0
            return if hy < 0 {
243
0
                s * HUGE * HUGE
244
            } else {
245
0
                s * TINY * TINY
246
            };
247
0
        }
248
0
        if ix > 0x3ff00000 {
249
0
            return if hy > 0 {
250
0
                s * HUGE * HUGE
251
            } else {
252
0
                s * TINY * TINY
253
            };
254
0
        }
255
0
256
0
        /* now |1-x| is TINY <= 2**-20, suffice to compute
257
0
        log(x) by x-x^2/2+x^3/3-x^4/4 */
258
0
        let t: f64 = ax - 1.0; /* t has 20 trailing zeros */
259
0
        let w: f64 = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
260
0
        let u: f64 = IVLN2_H * t; /* ivln2_h has 21 sig. bits */
261
0
        let v: f64 = t * IVLN2_L - w * IVLN2;
262
0
        t1 = with_set_low_word(u + v, 0);
263
0
        t2 = v - (t1 - u);
264
    } else {
265
        // double ss,s2,s_h,s_l,t_h,t_l;
266
0
        let mut n: i32 = 0;
267
0
268
0
        if ix < 0x00100000 {
269
0
            /* take care subnormal number */
270
0
            ax *= TWO53;
271
0
            n -= 53;
272
0
            ix = get_high_word(ax) as i32;
273
0
        }
274
275
0
        n += (ix >> 20) - 0x3ff;
276
0
        j = ix & 0x000fffff;
277
0
278
0
        /* determine interval */
279
0
        let k: i32;
280
0
        ix = j | 0x3ff00000; /* normalize ix */
281
0
        if j <= 0x3988E {
282
0
            /* |x|<sqrt(3/2) */
283
0
            k = 0;
284
0
        } else if j < 0xBB67A {
285
0
            /* |x|<sqrt(3)   */
286
0
            k = 1;
287
0
        } else {
288
0
            k = 0;
289
0
            n += 1;
290
0
            ix -= 0x00100000;
291
0
        }
292
0
        ax = with_set_high_word(ax, ix as u32);
293
0
294
0
        /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
295
0
        let u: f64 = ax - i!(BP, k as usize); /* bp[0]=1.0, bp[1]=1.5 */
296
0
        let v: f64 = 1.0 / (ax + i!(BP, k as usize));
297
0
        let ss: f64 = u * v;
298
0
        let s_h = with_set_low_word(ss, 0);
299
0
300
0
        /* t_h=ax+bp[k] High */
301
0
        let t_h: f64 = with_set_high_word(
302
0
            0.0,
303
0
            ((ix as u32 >> 1) | 0x20000000) + 0x00080000 + ((k as u32) << 18),
304
0
        );
305
0
        let t_l: f64 = ax - (t_h - i!(BP, k as usize));
306
0
        let s_l: f64 = v * ((u - s_h * t_h) - s_h * t_l);
307
0
308
0
        /* compute log(ax) */
309
0
        let s2: f64 = ss * ss;
310
0
        let mut r: f64 = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
311
0
        r += s_l * (s_h + ss);
312
0
        let s2: f64 = s_h * s_h;
313
0
        let t_h: f64 = with_set_low_word(3.0 + s2 + r, 0);
314
0
        let t_l: f64 = r - ((t_h - 3.0) - s2);
315
0
316
0
        /* u+v = ss*(1+...) */
317
0
        let u: f64 = s_h * t_h;
318
0
        let v: f64 = s_l * t_h + t_l * ss;
319
0
320
0
        /* 2/(3log2)*(ss+...) */
321
0
        let p_h: f64 = with_set_low_word(u + v, 0);
322
0
        let p_l = v - (p_h - u);
323
0
        let z_h: f64 = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */
324
0
        let z_l: f64 = CP_L * p_h + p_l * CP + i!(DP_L, k as usize);
325
0
326
0
        /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
327
0
        let t: f64 = n as f64;
328
0
        t1 = with_set_low_word(((z_h + z_l) + i!(DP_H, k as usize)) + t, 0);
329
0
        t2 = z_l - (((t1 - t) - i!(DP_H, k as usize)) - z_h);
330
    }
331
332
    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
333
0
    let y1: f64 = with_set_low_word(y, 0);
334
0
    let p_l: f64 = (y - y1) * t1 + y * t2;
335
0
    let mut p_h: f64 = y1 * t1;
336
0
    let z: f64 = p_l + p_h;
337
0
    let mut j: i32 = (z.to_bits() >> 32) as i32;
338
0
    let i: i32 = z.to_bits() as i32;
339
0
    // let (j, i): (i32, i32) = ((z.to_bits() >> 32) as i32, z.to_bits() as i32);
340
0
341
0
    if j >= 0x40900000 {
342
        /* z >= 1024 */
343
0
        if (j - 0x40900000) | i != 0 {
344
            /* if z > 1024 */
345
0
            return s * HUGE * HUGE; /* overflow */
346
0
        }
347
0
348
0
        if p_l + OVT > z - p_h {
349
0
            return s * HUGE * HUGE; /* overflow */
350
0
        }
351
0
    } else if (j & 0x7fffffff) >= 0x4090cc00 {
352
        /* z <= -1075 */
353
        // FIXME: instead of abs(j) use unsigned j
354
355
0
        if (((j as u32) - 0xc090cc00) | (i as u32)) != 0 {
356
            /* z < -1075 */
357
0
            return s * TINY * TINY; /* underflow */
358
0
        }
359
0
360
0
        if p_l <= z - p_h {
361
0
            return s * TINY * TINY; /* underflow */
362
0
        }
363
0
    }
364
365
    /* compute 2**(p_h+p_l) */
366
0
    let i: i32 = j & 0x7fffffff_i32;
367
0
    k = (i >> 20) - 0x3ff;
368
0
    let mut n: i32 = 0;
369
0
370
0
    if i > 0x3fe00000 {
371
        /* if |z| > 0.5, set n = [z+0.5] */
372
0
        n = j + (0x00100000 >> (k + 1));
373
0
        k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */
374
0
        let t: f64 = with_set_high_word(0.0, (n & !(0x000fffff >> k)) as u32);
375
0
        n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
376
0
        if j < 0 {
377
0
            n = -n;
378
0
        }
379
0
        p_h -= t;
380
0
    }
381
382
0
    let t: f64 = with_set_low_word(p_l + p_h, 0);
383
0
    let u: f64 = t * LG2_H;
384
0
    let v: f64 = (p_l - (t - p_h)) * LG2 + t * LG2_L;
385
0
    let mut z: f64 = u + v;
386
0
    let w: f64 = v - (z - u);
387
0
    let t: f64 = z * z;
388
0
    let t1: f64 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
389
0
    let r: f64 = (z * t1) / (t1 - 2.0) - (w + z * w);
390
0
    z = 1.0 - (r - z);
391
0
    j = get_high_word(z) as i32;
392
0
    j += n << 20;
393
0
394
0
    if (j >> 20) <= 0 {
395
0
        /* subnormal output */
396
0
        z = scalbn(z, n);
397
0
    } else {
398
0
        z = with_set_high_word(z, j as u32);
399
0
    }
400
401
0
    s * z
402
0
}
403
404
#[cfg(test)]
405
mod tests {
406
    extern crate core;
407
408
    use self::core::f64::consts::{E, PI};
409
    use super::pow;
410
411
    const POS_ZERO: &[f64] = &[0.0];
412
    const NEG_ZERO: &[f64] = &[-0.0];
413
    const POS_ONE: &[f64] = &[1.0];
414
    const NEG_ONE: &[f64] = &[-1.0];
415
    const POS_FLOATS: &[f64] = &[99.0 / 70.0, E, PI];
416
    const NEG_FLOATS: &[f64] = &[-99.0 / 70.0, -E, -PI];
417
    const POS_SMALL_FLOATS: &[f64] = &[(1.0 / 2.0), f64::MIN_POSITIVE, f64::EPSILON];
418
    const NEG_SMALL_FLOATS: &[f64] = &[-(1.0 / 2.0), -f64::MIN_POSITIVE, -f64::EPSILON];
419
    const POS_EVENS: &[f64] = &[2.0, 6.0, 8.0, 10.0, 22.0, 100.0, f64::MAX];
420
    const NEG_EVENS: &[f64] = &[f64::MIN, -100.0, -22.0, -10.0, -8.0, -6.0, -2.0];
421
    const POS_ODDS: &[f64] = &[3.0, 7.0];
422
    const NEG_ODDS: &[f64] = &[-7.0, -3.0];
423
    const NANS: &[f64] = &[f64::NAN];
424
    const POS_INF: &[f64] = &[f64::INFINITY];
425
    const NEG_INF: &[f64] = &[f64::NEG_INFINITY];
426
427
    const ALL: &[&[f64]] = &[
428
        POS_ZERO,
429
        NEG_ZERO,
430
        NANS,
431
        NEG_SMALL_FLOATS,
432
        POS_SMALL_FLOATS,
433
        NEG_FLOATS,
434
        POS_FLOATS,
435
        NEG_EVENS,
436
        POS_EVENS,
437
        NEG_ODDS,
438
        POS_ODDS,
439
        NEG_INF,
440
        POS_INF,
441
        NEG_ONE,
442
        POS_ONE,
443
    ];
444
    const POS: &[&[f64]] = &[POS_ZERO, POS_ODDS, POS_ONE, POS_FLOATS, POS_EVENS, POS_INF];
445
    const NEG: &[&[f64]] = &[NEG_ZERO, NEG_ODDS, NEG_ONE, NEG_FLOATS, NEG_EVENS, NEG_INF];
446
447
    fn pow_test(base: f64, exponent: f64, expected: f64) {
448
        let res = pow(base, exponent);
449
        assert!(
450
            if expected.is_nan() {
451
                res.is_nan()
452
            } else {
453
                pow(base, exponent) == expected
454
            },
455
            "{base} ** {exponent} was {res} instead of {expected}",
456
        );
457
    }
458
459
    fn test_sets_as_base(sets: &[&[f64]], exponent: f64, expected: f64) {
460
        sets.iter()
461
            .for_each(|s| s.iter().for_each(|val| pow_test(*val, exponent, expected)));
462
    }
463
464
    fn test_sets_as_exponent(base: f64, sets: &[&[f64]], expected: f64) {
465
        sets.iter()
466
            .for_each(|s| s.iter().for_each(|val| pow_test(base, *val, expected)));
467
    }
468
469
    fn test_sets(sets: &[&[f64]], computed: &dyn Fn(f64) -> f64, expected: &dyn Fn(f64) -> f64) {
470
        sets.iter().for_each(|s| {
471
            s.iter().for_each(|val| {
472
                let exp = expected(*val);
473
                let res = computed(*val);
474
475
                #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
476
                let exp = force_eval!(exp);
477
                #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
478
                let res = force_eval!(res);
479
                assert!(
480
                    if exp.is_nan() {
481
                        res.is_nan()
482
                    } else {
483
                        exp == res
484
                    },
485
                    "test for {val} was {res} instead of {exp}",
486
                );
487
            })
488
        });
489
    }
490
491
    #[test]
492
    fn zero_as_exponent() {
493
        test_sets_as_base(ALL, 0.0, 1.0);
494
        test_sets_as_base(ALL, -0.0, 1.0);
495
    }
496
497
    #[test]
498
    fn one_as_base() {
499
        test_sets_as_exponent(1.0, ALL, 1.0);
500
    }
501
502
    #[test]
503
    fn nan_inputs() {
504
        // NAN as the base:
505
        // (f64::NAN ^ anything *but 0* should be f64::NAN)
506
        test_sets_as_exponent(f64::NAN, &ALL[2..], f64::NAN);
507
508
        // f64::NAN as the exponent:
509
        // (anything *but 1* ^ f64::NAN should be f64::NAN)
510
        test_sets_as_base(&ALL[..(ALL.len() - 2)], f64::NAN, f64::NAN);
511
    }
512
513
    #[test]
514
    fn infinity_as_base() {
515
        // Positive Infinity as the base:
516
        // (+Infinity ^ positive anything but 0 and f64::NAN should be +Infinity)
517
        test_sets_as_exponent(f64::INFINITY, &POS[1..], f64::INFINITY);
518
519
        // (+Infinity ^ negative anything except 0 and f64::NAN should be 0.0)
520
        test_sets_as_exponent(f64::INFINITY, &NEG[1..], 0.0);
521
522
        // Negative Infinity as the base:
523
        // (-Infinity ^ positive odd ints should be -Infinity)
524
        test_sets_as_exponent(f64::NEG_INFINITY, &[POS_ODDS], f64::NEG_INFINITY);
525
526
        // (-Infinity ^ anything but odd ints should be == -0 ^ (-anything))
527
        // We can lump in pos/neg odd ints here because they don't seem to
528
        // cause panics (div by zero) in release mode (I think).
529
        test_sets(ALL, &|v: f64| pow(f64::NEG_INFINITY, v), &|v: f64| {
530
            pow(-0.0, -v)
531
        });
532
    }
533
534
    #[test]
535
    fn infinity_as_exponent() {
536
        // Positive/Negative base greater than 1:
537
        // (pos/neg > 1 ^ Infinity should be Infinity - note this excludes f64::NAN as the base)
538
        test_sets_as_base(&ALL[5..(ALL.len() - 2)], f64::INFINITY, f64::INFINITY);
539
540
        // (pos/neg > 1 ^ -Infinity should be 0.0)
541
        test_sets_as_base(&ALL[5..ALL.len() - 2], f64::NEG_INFINITY, 0.0);
542
543
        // Positive/Negative base less than 1:
544
        let base_below_one = &[POS_ZERO, NEG_ZERO, NEG_SMALL_FLOATS, POS_SMALL_FLOATS];
545
546
        // (pos/neg < 1 ^ Infinity should be 0.0 - this also excludes f64::NAN as the base)
547
        test_sets_as_base(base_below_one, f64::INFINITY, 0.0);
548
549
        // (pos/neg < 1 ^ -Infinity should be Infinity)
550
        test_sets_as_base(base_below_one, f64::NEG_INFINITY, f64::INFINITY);
551
552
        // Positive/Negative 1 as the base:
553
        // (pos/neg 1 ^ Infinity should be 1)
554
        test_sets_as_base(&[NEG_ONE, POS_ONE], f64::INFINITY, 1.0);
555
556
        // (pos/neg 1 ^ -Infinity should be 1)
557
        test_sets_as_base(&[NEG_ONE, POS_ONE], f64::NEG_INFINITY, 1.0);
558
    }
559
560
    #[test]
561
    fn zero_as_base() {
562
        // Positive Zero as the base:
563
        // (+0 ^ anything positive but 0 and f64::NAN should be +0)
564
        test_sets_as_exponent(0.0, &POS[1..], 0.0);
565
566
        // (+0 ^ anything negative but 0 and f64::NAN should be Infinity)
567
        // (this should panic because we're dividing by zero)
568
        test_sets_as_exponent(0.0, &NEG[1..], f64::INFINITY);
569
570
        // Negative Zero as the base:
571
        // (-0 ^ anything positive but 0, f64::NAN, and odd ints should be +0)
572
        test_sets_as_exponent(-0.0, &POS[3..], 0.0);
573
574
        // (-0 ^ anything negative but 0, f64::NAN, and odd ints should be Infinity)
575
        // (should panic because of divide by zero)
576
        test_sets_as_exponent(-0.0, &NEG[3..], f64::INFINITY);
577
578
        // (-0 ^ positive odd ints should be -0)
579
        test_sets_as_exponent(-0.0, &[POS_ODDS], -0.0);
580
581
        // (-0 ^ negative odd ints should be -Infinity)
582
        // (should panic because of divide by zero)
583
        test_sets_as_exponent(-0.0, &[NEG_ODDS], f64::NEG_INFINITY);
584
    }
585
586
    #[test]
587
    fn special_cases() {
588
        // One as the exponent:
589
        // (anything ^ 1 should be anything - i.e. the base)
590
        test_sets(ALL, &|v: f64| pow(v, 1.0), &|v: f64| v);
591
592
        // Negative One as the exponent:
593
        // (anything ^ -1 should be 1/anything)
594
        test_sets(ALL, &|v: f64| pow(v, -1.0), &|v: f64| 1.0 / v);
595
596
        // Factoring -1 out:
597
        // (negative anything ^ integer should be (-1 ^ integer) * (positive anything ^ integer))
598
        [POS_ZERO, NEG_ZERO, POS_ONE, NEG_ONE, POS_EVENS, NEG_EVENS]
599
            .iter()
600
            .for_each(|int_set| {
601
                int_set.iter().for_each(|int| {
602
                    test_sets(ALL, &|v: f64| pow(-v, *int), &|v: f64| {
603
                        pow(-1.0, *int) * pow(v, *int)
604
                    });
605
                })
606
            });
607
608
        // Negative base (imaginary results):
609
        // (-anything except 0 and Infinity ^ non-integer should be NAN)
610
        NEG[1..(NEG.len() - 1)].iter().for_each(|set| {
611
            set.iter().for_each(|val| {
612
                test_sets(&ALL[3..7], &|v: f64| pow(*val, v), &|_| f64::NAN);
613
            })
614
        });
615
    }
616
617
    #[test]
618
    fn normal_cases() {
619
        assert_eq!(pow(2.0, 20.0), (1 << 20) as f64);
620
        assert_eq!(pow(-1.0, 9.0), -1.0);
621
        assert!(pow(-1.0, 2.2).is_nan());
622
        assert!(pow(-1.0, -1.14).is_nan());
623
    }
624
}